Directions This exam has three parts. Part A has 5 shorter questions, (6 points each), Part B has 6 True/False questions (5 points each), and Part C has 5 standard problems (12 points each). Maximum score is thus 120 points.
Closed book, no calculators, cell phones, or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.
Part A: Five short answer questions (6 points each, so 30 points).
A-1. Suppose $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{4}$ is a linear map represented by a matrix, A.
a) What are the possible values for the rank of A ? Why?

Solution By the Rank-Nullity Theorem $0 \leq \operatorname{rank}(A) \leq \min \{6,4\}=4$.
b) What are the possible values for the dimension of the kernel of A ? Why?

Solution Since $\operatorname{dim}(\operatorname{image}(A)) \leq 4$, by the Rank-Nullity Theorem $2 \leq \operatorname{dim} \operatorname{ker}(A) \leq 6$.
c) Suppose the rank of A is as large as possible. What is the dimension of $\operatorname{ker}(A)^{\perp}$? Explain.

Solution Since then $\operatorname{dim}(\operatorname{image}(A))=4$, then $\operatorname{dim}(\operatorname{ker}(A))=2$ so $\operatorname{dim}(\operatorname{ker}(A))^{\perp}=$ $6-4=2$.

A-2. In the following equations

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3}+x_{4}= & 1 \\
x_{1}-x_{2}-2 x_{3}+x_{4}= & 0 \\
-x_{1}+x_{2}-2 x_{3}+x_{4}= & 3 \\
-x_{1}-x_{2}+2 x_{3}+x_{4}= & 2
\end{aligned}
$$

solve for for x_{2} (only!). [OBSERVE that if you write this as $x_{1} \vec{v}_{1}+\cdots+x_{4} \vec{v}_{4}=\vec{b}$, then the vectors \vec{v}_{j} are orthogonal.]
Solution Take the inner product of $x_{1} \vec{v}_{1}+\cdots+x_{4} \vec{v}_{4}=\vec{b}$ with \vec{v}_{2} to find

$$
x_{2}\left\langle\vec{v}_{2}, \vec{v}_{2}\right\rangle=\left\langle\vec{b}, \vec{v}_{2}\right\rangle
$$

That is, $4 x_{2}=2$ so $x_{2}=1 / 2$.

A-3. Let $P_{1}=\left(a_{1}, b_{1}\right), P_{2}=\left(a_{2}, b_{2}\right), \ldots P_{5}=\left(a_{5}, b_{5}\right)$ be five points in the plane \mathbb{R}^{2}. Find the point $Q=(x, y)$ that minimizes

$$
f(x, y)=\left\|P_{1}-Q\right\|^{2}+\left\|P_{2}-Q\right\|^{2}+\cdots+\left\|P_{5}-Q\right\|^{2} .
$$

Solution Method 1. Expand $f(x, y)$ to find

$$
f(x, y)=\left[\left(a_{1}-x\right)^{2}+\left(b_{1}-y\right)^{2}\right]+\left[\left(a_{2}-x\right)^{2}+\left(b_{2}-y\right)^{2}\right]+\cdots+\left[\left(a_{5}-x\right)^{2}+\left(b_{5}-y\right)^{2}\right] .
$$

At a minimum, the first partial derivatives are zero:

$$
0=f_{x}(x, y)=-2\left[\left(a_{1}-x\right)+\left(a_{2}-x\right)+\ldots+\left(a_{5}-x\right)\right]
$$

and

$$
0=f_{y}(x, y)=-2\left[\left(b_{1}-y\right)+\left(b_{2}-y\right)+\ldots+\left(b_{5}-y\right)\right]
$$

so

$$
x=\frac{a_{1}+a_{2}+\cdots+a_{5}}{5} \quad \text { and } \quad y=\frac{b_{1}+b_{2}+\cdots+b_{5}}{5}
$$

Method 1^{\prime}. Same, but not using coordinates. Say f is minimized at Q. Then for any vector V, the function $\varphi(t):=f(Q+t V)=\sum_{j=1}^{5}\left\|P_{j}-(Q+t V)\right\|^{2}$ has a min at $t=0$. Therefore $\varphi^{\prime}(0)=0$. Since

$$
\left.\frac{d}{d t}\left\|P_{j}-(Q+t V)\right\|^{2}\right|_{t=0}=-2\left\langle P_{j}-Q, V\right\rangle
$$

then

$$
0=-2 \sum_{j=1}^{5}\left\langle P_{j}-Q, V\right\rangle=-2\left\langle P_{1}+P_{2}+\cdots+P_{5}-5 Q, V\right\rangle .
$$

Since this must hold for all V, then $P_{1}+P_{2}+\cdots+P_{5}-5 Q=0$, that is

$$
Q=\frac{P_{1}+P_{2}+\cdots+P_{5}}{5} .
$$

Method 2 This approach is clearer with n points $P_{1}, P_{2}, \ldots, P_{n}$. Since

$$
\left\|P_{j}-Q\right\|^{2}=\left\|P_{j}\right\|^{2}-2\left\langle P_{j}, Q\right\rangle+\|Q\|^{2}
$$

then, letting $\bar{P}=\frac{1}{n}\left(P_{1}+P_{2}+\cdots+P_{n}\right)$, we have

$$
\begin{aligned}
f(Q)=\sum_{j=1}^{n}\left\|P_{j}-Q\right\|^{2} & =\left[\sum_{j=1}^{n}\left\|P_{j}\right\|^{2}\right]-2 n\langle\bar{P}, Q\rangle+n\|Q\|^{2} \\
& =\left[\sum_{j=1}^{n}\left\|P_{j}\right\|^{2}\right]+n\left[\|\bar{P}-Q\|^{2}-\|\bar{P}\|^{2}\right]
\end{aligned},
$$

which is clearly minimized by letting $Q=\bar{P}$.

A-4. Let A be an $n \times k$ matrix.
a) If $\lambda_{1} \neq 0$ is an eigenvalue of $A^{*} A$, show that it is also an eigenvalue of $A A^{*}$. [Note where you use $\lambda_{1} \neq 0$].
Solution Say $A^{*} A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}$ for some $\vec{v}_{1} \neq 0$, Then

$$
A\left(A^{*} A \vec{v}_{1}\right)=\lambda_{1} A \vec{v}_{1} .
$$

Let $\vec{w}=A \vec{v}_{1}$. Then $A A^{*} \vec{w}=\lambda_{1} \vec{w}$. Since $\lambda_{1} \neq 0$, then $\vec{w} \neq 0$ so indeed \vec{w} is an eigenvector of $A A^{*}$ with eigenvalue λ_{1}.
b) If \vec{v}_{1} and \vec{v}_{2} are orthogonal eigenvectors of $A^{*} A$, let $\vec{u}_{1}=A \vec{v}_{1}$, and $\vec{u}_{2}=A \vec{v}_{2}$. Show that \vec{u}_{1} and \vec{u}_{2} are orthogonal.
Solution $\left\langle\vec{u}_{1}, \vec{u}_{2}\right\rangle=\left\langle A \vec{v}_{1}, A \vec{v}_{2}\right\rangle=\left\langle\vec{v}_{1}, A^{*} A \vec{v}_{2}\right\rangle=\lambda_{2}\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle=0$.

A-5. Let A be a real matrix with the property that $\langle\vec{x}, A \vec{x}\rangle=0$ for all real vectors \vec{x}.
a) If A is a symmetric matrix, show this implies that $A=0$.

Solution Since A is a symmetric matrix, there is an orthonormal eigenbasis $\vec{v}_{1}, \ldots, \vec{v}_{n}$ with $A \vec{v}_{j}=\lambda_{j} \vec{v}_{j}$. Writing $\vec{x}=y_{1} \vec{v}_{1}+\cdots+y_{n} \vec{v}_{n}$ we have

$$
0=\langle\vec{x}, A \vec{x}\rangle=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

for all $y_{1}, y_{2}, \ldots, y_{n}$. The only possibility is that all the $\lambda_{j}=0$, that is, $A=0$.
b) Give an example of a real matrix $A \neq 0$ that satisfies $\langle\vec{x}, A \vec{x}\rangle=0$ for all real vectors \vec{x}. Solution Let $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ be a rotation by 90 degrees.

Part B Six True or False questions (5 points each, so 30 points). Be sure to give a brief explanation.

B-1. If $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a collection of vectors in \mathbb{R}^{5}, then the span of $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ must be a threedimensional subspace of \mathbb{R}^{5}.

Solution False. The dimension is at most three.

B-2. The set of polynomials in \mathcal{P}_{4} satisfying $p(0)=2$ is a linear subspace of \mathcal{P}_{4}.
Solution False. This set does not have the zero vector.

B-3. If $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a linear map and $\operatorname{ker} A^{*}=0$, then for any $\vec{b} \in \mathbb{R}^{n}$ there is at least one solution of $A \vec{x}=\vec{b}$.

Solution True since then image $(A)=\left(\operatorname{ker} A^{*}\right)^{\perp}$, which is everything.

B-4. If A is a 3×3 matrix with eigenvalues 1,2 , and 4 , then $A-4 I$ is invertible.
Solution False. The eigenvector corresponding to the eigenvalue $\lambda=4$ is in the kernel of $A-4 I$.
$\mathrm{B}-5$. If A is diagonalizable square matrix, then so is A^{2}.
Solution True. Since A is diagonalizable, then for some invertible matrix S and a diagonal matrix D we have $A=S D S^{-1}$. But then $A^{2}=S D^{2} S^{-1}$.

B-6. If a real matrix A can be orthogonally diagonalized, then it is self-adjoint (that is, symmetric).
Solution True since $A=R D R^{-1}$ for some orthogonal matrix R. But $R^{-1}=R^{*}$ so

$$
A^{*}=\left(R D R^{*}\right)^{*}=\left(R^{*}\right)^{*} D R^{*}=R D R^{*}=A .
$$

Part C Five questions, 12 points each (so 60 points total).
[Check your computation of any eigenvalues by computing the trace and determinant of the matrix].
$\mathrm{C}-1$. Let $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a linear map.
a) If $k=n$, so A is represented by a square matrix, show that ker $A=0 \operatorname{implies}$ that A is also onto - and hence invertible.

Solution Here $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. By the Rank-Nullity theorem, $\operatorname{dim}(\operatorname{image}(A))=n$ so the image of A is all of \mathbb{R}^{n}. Consequently A is onto and hence invertible.
b) If $k \neq n$, show that A cannot be invertible. Note there are two cases: $k<n$ and $k>n$. Solution If $k<n$ then by the Rank-Nullity theorem, the image of A is at most k so the map cannot be onto.
If $k>n$ then the image of A has dimension at most n so by the Nank-Nullity theorem $\operatorname{dim}(\operatorname{ker}(A)) \geq k-n>0$.

C-2. a) Find an orthogonal matrix R that diagonalizes $A:=\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$.
Solution We first find the eigenvalues:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(3-\lambda)\left[(2-\lambda)^{2}-1\right] \\
& =(3-\lambda)(1-\lambda)(3-\lambda)
\end{aligned}
$$

so the eigenvalues are $\lambda_{1}=1, \lambda_{2}=\lambda_{3}=3$. By a routine computation $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ while \vec{v}_{2} and \vec{v}_{3} must both have the form $\left(\begin{array}{r}a \\ -a \\ c\end{array}\right)$. One orthogonal set is $\vec{v}_{2}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$ and $\vec{v}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. For the orthogonal matrix R we need unit orthogonal eigenvectors as columns, so

$$
R=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { also } \quad D=\left(\begin{array}{lll}
1 & & \\
& 3 & \\
& & 3
\end{array}\right) .
$$

Then $A=R D R^{*}$. Note here, by chance, $R^{*}=R$.
b) Compute A^{50}.

Solution

$$
A^{50}=R D^{50} R^{*}=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & & \\
& 3^{50} & \\
& & 3^{50}
\end{array}\right)\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\mathrm{C}-3$. Of the following four matrices, which can be orthogonally diagonalized; which can be diagonalized (but not orthogonally); and which cannot be diagonalized at all. Identify these - fully explaining your reasoning.

$$
A=\left(\begin{array}{lll}
0 & 2 & 1 \\
2 & 0 & 3 \\
1 & 3 & 0
\end{array}\right), \quad B=\left(\begin{array}{ccc}
3 & 1 & 3 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right), \quad C=\left(\begin{array}{lll}
2 & 3 & 0 \\
0 & 2 & 2 \\
0 & 0 & 2
\end{array}\right), \quad D=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 2 & 0 \\
3 & 0 & 1
\end{array}\right) .
$$

Solution Because A and D are symmetric matrices, they can both be orthogonally diagonalized.
B is upper-triangular so its eigenvalues are on the diagonal. Since these three eigenvalues are distinct, it can be diagonalized. Since B is not symmetric, it cannot be orthogonally diagonalized
C is also upper-triangular so its eigenvalues are all 2. If C could be diagonalized, then it would be similar to $2 I$, so $C=S(2 I) S^{-1}=2 I$ for some invertible S. Since $C \neq 2 I$, it cannot be diagonalized.

C-4. Let $A=\left(\begin{array}{rr}1 & 0 \\ 2 & 2 \\ 0 & -1\end{array}\right)$. Find a vector \vec{v} that maximize $\|A \vec{x}\|$ on the unit disk $\|\vec{x}\|=1$. What is this maximum value?
Solution Note $\|A \vec{x}\|^{2}=\langle A \vec{x}, A \vec{x}\rangle=\left\langle\vec{x}, A^{*} A \vec{x}\right\rangle$. Let $C:=A^{*} A$. It is a symmetric positive semi-definite symmetric matrix (in fact, this C is positive definite). To maximize $\|A \vec{x}\|$ we pick \vec{x} to be an eigenvector of C corresponding to its largest eigenvalue.
Now $C=\left(\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right)$. Its eigenvalues are $\lambda_{1}=9$ and $\lambda_{2}=1$ with corresponding eigenvectors $\vec{v}_{1}=\binom{1}{1}$ and $\vec{v}_{2}=\binom{1}{-1}$.
Thus to maximize $\|A \vec{x}\|$ we let \vec{x} be a unit vector in the direction of \vec{v}_{1}, so $\vec{x}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$. Then $\|A \vec{x}\|=\sigma_{1}=\sqrt{\lambda_{1}}=3$.

C-5. Let $\vec{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}$ be a solution of the system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}=c x_{1}+x_{2} \\
& x_{2}^{\prime}=-x_{1}+c x_{2} .
\end{aligned}
$$

For which value(s) of the real constant c do all solutions $\vec{x}(t)$ converge to 0 as $t \rightarrow \infty$?
SOLUTION Rewrite this as $\vec{x}^{\prime}(t)=A \vec{x}$, where $A=\left(\begin{array}{rr}c & 1 \\ -1 & c\end{array}\right)$. By a routine computation the eigenvalues are $\lambda_{1}=c+i$ and $\lambda_{2}=c-i$. Since these are distinct, we can diagonalize A. Say the corresponding eigenvectors are \vec{v}_{1} and $\vec{v}_{2}\left(=\overrightarrow{\vec{v}}_{1}\right)$. We could compute them easily - but won't since we will not need them explicitly.
Since the \vec{v}_{j} are a basis for \mathbb{R}^{2} we can write

$$
\begin{equation*}
\vec{x}(t)=y_{1}(t) \vec{v}_{1}+y_{2}(t) \vec{v}_{2}, \tag{1}
\end{equation*}
$$

where the coefficients $y_{j}(t)$ are to be found. Now

$$
\vec{x}^{\prime}(t)=y_{1}^{\prime}(t) \vec{v}_{1}+y_{2}^{\prime}(t) \vec{v}_{2} \quad \text { and } \quad A \vec{x}(t)=\lambda_{1} y_{1}(t) \vec{v}_{1}+\lambda_{2} y_{2}(t) \vec{v}_{2} .
$$

Because $\vec{x}^{\prime}=A \vec{x}$, comparing these we see that

$$
y_{1}^{\prime}=\lambda_{1} y_{1} \quad \text { and } \quad y_{2}^{\prime}=\lambda_{2} y_{2}
$$

whose solutions are

$$
y_{1}(t)=a e^{\lambda_{1} t}=a e^{(c+i) t}=a e^{c t}(\cos t+i \sin t)
$$

and

$$
y_{2}(t)=b e^{\lambda_{2} t}=b e^{(c-i) t}=b e^{c t}(\cos t-i \sin t),
$$

where a and b can be any (complex) constants. In equation (1), because \vec{v}_{1} and \vec{v}_{2} are constant vectors, for all solutions $\vec{x}(t) \rightarrow 0$ as $t \rightarrow \infty$, we need that the $\left|y_{j}(t)\right| \rightarrow 0$. But since $|\cos t \pm i \sin t|=1$, then

$$
\left|y_{j}(t)\right|=e^{c t}|\cos t \pm i \sin t|=e^{c t} .
$$

Because c is a real number, $e^{c t} \rightarrow 0$ as $t \rightarrow \infty$ if (and only if) $c<0$.

