
Math 312 Final Exam Jerry L. Kazdan
May 5, 2014 12:00 – 2:00

Directions This exam has three parts. Part A has 5 shorter questions, (6 points each), Part B
has 6 True/False questions (5 points each), and Part C has 5 standard problems (12 points each).
Maximum score is thus 120 points.
Closed book, no calculators, cell phones, or computers– but you may use one 3′′ × 5′′ card with
notes on both sides. Clarity and neatness count.

Part A: Five short answer questions (6 points each, so 30 points).

A–1. Suppose T : R
6 → R

4 is a linear map represented by a matrix, A .

a) What are the possible values for the rank of A? Why?

Solution By the Rank-Nullity Theorem 0 ≤ rank (A) ≤ min{6, 4} = 4.

b) What are the possible values for the dimension of the kernel of A? Why?

Solution Since dim(image(A)) ≤ 4, by the Rank-Nullity Theorem 2 ≤ dim ker(A) ≤ 6.

c) Suppose the rank of A is as large as possible. What is the dimension of ker(A)⊥? Explain.

Solution Since then dim(image(A)) = 4, then dim(ker(A)) = 2 so dim(ker(A))⊥ =
6 − 4 = 2.

A–2. In the following equations

x1 + x2 + 2x3 + x4 = 1

x1 − x2 − 2x3 + x4 = 0

− x1 + x2 − 2x3 + x4 = 3

− x1 − x2 + 2x3 + x4 = 2

solve for for x2 (only!). [Observe that if you write this as x1~v1 + · · · + x4~v4 = ~b , then the
vectors ~vj are orthogonal.]

Solution Take the inner product of x1~v1 + · · · + x4~v4 = ~b with ~v2 to find

x2〈~v2, ~v2〉 = 〈~b, ~v2〉.

That is, 4x2 = 2 so x2 = 1/2.

A–3. Let P1 = (a1, b1), P2 = (a2, b2), . . . P5 = (a5, b5) be five points in the plane R
2 . Find the

point Q = (x, y) that minimizes

f(x, y) = ‖P1 − Q‖2 + ‖P2 − Q‖2 + · · · + ‖P5 − Q‖2.

Solution Method 1. Expand f(x, y) to find

f(x, y) = [(a1 − x)2 + (b1 − y)2] + [(a2 − x)2 + (b2 − y)2] + · · · + [(a5 − x)2 + (b5 − y)2].
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At a minimum, the first partial derivatives are zero:

0 = fx(x, y) = −2[(a1 − x) + (a2 − x) + . . . + (a5 − x)]

and
0 = fy(x, y) = −2[(b1 − y) + (b2 − y) + . . . + (b5 − y)]

so

x =
a1 + a2 + · · · + a5

5
and y =

b1 + b2 + · · · + b5

5

Method 1 ′ . Same, but not using coordinates. Say f is minimized at Q . Then for any vector
V , the function ϕ(t) := f(Q + tV ) =

∑5
j=1‖Pj − (Q + tV )‖2 has a min at t = 0. Therefore

ϕ′(0) = 0. Since
d

dt
‖Pj − (Q + tV )‖2

t=0 = −2〈Pj − Q, V 〉

then

0 = −2
5

∑

j=1

〈Pj − Q, V 〉 = −2〈P1 + P2 + · · · + P5 − 5Q, V 〉.

Since this must hold for all V , then P1 + P2 + · · · + P5 − 5Q = 0, that is

Q =
P1 + P2 + · · · + P5

5
.

Method 2 This approach is clearer with n points P1, P2, . . . , Pn . Since

‖Pj − Q‖2 = ‖Pj‖2 − 2〈Pj , Q〉 + ‖Q‖2,

then, letting P = 1
n
(P1 + P2 + · · · + Pn), we have

f(Q) =
n

∑

j=1

‖Pj − Q‖2 =

[ n
∑

j=1

‖Pj‖2

]

− 2n〈P , Q〉 + n‖Q‖2

=

[ n
∑

j=1

‖Pj‖2

]

+ n
[

‖P − Q‖2 − ‖P‖2
]

,

which is clearly minimized by letting Q = P .

A–4. Let A be an n × k matrix.

a) If λ1 6= 0 is an eigenvalue of A∗A , show that it is also an eigenvalue of AA∗ . [Note where
you use λ1 6= 0].

Solution Say A∗A~v1 = λ1~v1 for some ~v1 6= 0, Then

A(A∗A~v1) = λ1A~v1.

Let ~w = A~v1 . Then AA∗ ~w = λ1 ~w . Since λ1 6= 0, then ~w 6= 0 so indeed ~w is an eigenvector
of AA∗ with eigenvalue λ1 .
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b) If ~v1 and ~v2 are orthogonal eigenvectors of A∗A , let ~u1 = A~v1 , and ~u2 = A~v2 . Show that
~u1 and ~u2 are orthogonal.

Solution 〈~u1, ~u2〉 = 〈A~v1, A~v2〉 = 〈~v1, A∗A~v2〉 = λ2〈~v1, ~v2〉 = 0.

A–5. Let A be a real matrix with the property that 〈~x, A~x〉 = 0 for all real vectors ~x .

a) If A is a symmetric matrix, show this implies that A = 0.

Solution Since A is a symmetric matrix, there is an orthonormal eigenbasis ~v1 ,. . . ,~vn

with A~vj = λj~vj . Writing ~x = y1~v1 + · · · + yn~vn we have

0 = 〈~x, A~x〉 = λ1y
2
1 + λ2y

2
2 + · · · + λny2

n

for all y1, y2, . . . , yn . The only possibility is that all the λj = 0, that is, A = 0.

b) Give an example of a real matrix A 6= 0 that satisfies 〈~x, A~x〉 = 0 for all real vectors ~x .

Solution Let A =
(

0 −1
1 0

)

be a rotation by 90 degrees.

Part B Six True or False questions (5 points each, so 30 points). Be sure to give a brief
explanation.

B–1. If {~v1, ~v2, ~v3} is a collection of vectors in R
5 , then the span of {~v1, ~v2, ~v3} must be a three-

dimensional subspace of R
5 .

Solution False. The dimension is at most three.

B–2. The set of polynomials in P4 satisfying p(0) = 2 is a linear subspace of P4 .

Solution False. This set does not have the zero vector.

B–3. If A : R
k → R

n be a linear map and kerA∗ = 0, then for any ~b ∈ R
n there is at least one

solution of A~x = ~b .

Solution True since then image (A) = (kerA∗)⊥ , which is everything.

B–4. If A is a 3 × 3 matrix with eigenvalues 1, 2, and 4, then A − 4I is invertible.

Solution False. The eigenvector corresponding to the eigenvalue λ = 4 is in the kernel of
A − 4I .

B–5. If A is diagonalizable square matrix, then so is A2 .

Solution True. Since A is diagonalizable, then for some invertible matrix S and a diagonal
matrix D we have A = SDS−1 . But then A2 = SD2S−1 .
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B–6. If a real matrix A can be orthogonally diagonalized, then it is self-adjoint (that is, symmetric).

Solution True since A = RDR−1 for some orthogonal matrix R . But R−1 = R∗ so

A∗ = (RDR∗)∗ = (R∗)∗DR∗ = RDR∗ = A.

Part C Five questions, 12 points each (so 60 points total).
[Check your computation of any eigenvalues by computing the trace and determinant of the ma-
trix].

C–1. Let A : R
k → R

n be a linear map.

a) If k = n , so A is represented by a square matrix, show that kerA = 0 implies that A is
also onto – and hence invertible.

Solution Here A : R
n → R

n . By the Rank-Nullity theorem, dim(image (A)) = n so the
image of A is all of R

n . Consequently A is onto and hence invertible.

b) If k 6= n , show that A cannot be invertible. Note there are two cases: k < n and k > n .

Solution If k < n then by the Rank-Nullity theorem, the image of A is at most k so
the map cannot be onto.

If k > n then the image of A has dimension at most n so by the Nank-Nullity theorem
dim(ker(A)) ≥ k − n > 0.

C–2. a) Find an orthogonal matrix R that diagonalizes A :=





2 −1 0
−1 2 0

0 0 3



 .

Solution We first find the eigenvalues:

det(A − λI) =(3 − λ)[(2 − λ)2 − 1]

=(3 − λ)(1 − λ)(3 − λ)

so the eigenvalues are λ1 = 1, λ2 = λ3 = 3. By a routine computation ~v1 =





1
1
0





while ~v2 and ~v3 must both have the form





a
−a

c



 . One orthogonal set is ~v2 =





1
−1

0



 and

~v3 =





0
0
1



 . For the orthogonal matrix R we need unit orthogonal eigenvectors as columns,

so

R =





1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0
0 0 1



 also D =





1
3

3



 .

Then A = RDR∗ . Note here, by chance, R∗ = R .
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b) Compute A50 .

Solution

A50 = RD50R∗ =





1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0
0 0 1









1
350

350









1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0
0 0 1





C–3. Of the following four matrices, which can be orthogonally diagonalized; which can be diago-
nalized (but not orthogonally); and which cannot be diagonalized at all. Identify these – fully

explaining your reasoning.

A =





0 2 1
2 0 3
1 3 0



 , B =





3 1 3
0 0 1
0 0 1



 , C =





2 3 0
0 2 2
0 0 2



 , D =





1 0 3
0 2 0
3 0 1



 .

Solution Because A and D are symmetric matrices, they can both be orthogonally diago-
nalized.

B is upper-triangular so its eigenvalues are on the diagonal. Since these three eigenvalues
are distinct, it can be diagonalized. Since B is not symmetric, it cannot be orthogonally
diagonalized

C is also upper-triangular so its eigenvalues are all 2. If C could be diagonalized, then it
would be similar to 2I , so C = S(2I)S−1 = 2I for some invertible S . Since C 6= 2I , it cannot
be diagonalized.

C–4. Let A =





1 0
2 2
0 −1



 . Find a vector ~v that maximize ‖A~x‖ on the unit disk ‖~x‖ = 1. What

is this maximum value?

Solution Note ‖A~x‖2 = 〈A~x, A~x〉 = 〈~x, A∗A~x〉 . Let C := A∗A . It is a symmetric positive
semi-definite symmetric matrix (in fact, this C is positive definite). To maximize ‖A~x‖ we
pick ~x to be an eigenvector of C corresponding to its largest eigenvalue.

Now C =

(

5 4
4 5

)

. Its eigenvalues are λ1 = 9 and λ2 = 1 with corresponding eigenvectors

~v1 =

(

1
1

)

and ~v2 =

(

1
−1

)

.

Thus to maximize ‖A~x‖ we let ~x be a unit vector in the direction of ~v1 , so ~x =

(

1/
√

2

1/
√

2

)

.

Then ‖A~x‖ = σ1 =
√

λ1 = 3.

C–5. Let ~x(t) =

(

x1(t)
x2(t)

)

be a solution of the system of differential equations

x′

1 = cx1 + x2

x′

2 = − x1 + cx2
.
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For which value(s) of the real constant c do all solutions ~x(t) converge to 0 as t → ∞?

Solution Rewrite this as ~x′(t) = A~x , where A =

(

c 1
−1 c

)

. By a routine computation the

eigenvalues are λ1 = c + i and λ2 = c − i . Since these are distinct, we can diagonalize A .
Say the corresponding eigenvectors are ~v1 and ~v2(= ~v1). We could compute them easily – but
won’t since we will not need them explicitly.

Since the ~vj are a basis for R
2 we can write

~x(t) = y1(t)~v1 + y2(t)~v2, (1)

where the coefficients yj(t) are to be found. Now

~x ′(t) = y′1(t)~v1 + y′2(t)~v2 and A~x(t) = λ1y1(t)~v1 + λ2y2(t)~v2.

Because ~x ′ = A~x , comparing these we see that

y′1 = λ1y1 and y′2 = λ2y2

whose solutions are
y1(t) = aeλ1t = ae(c+i)t = aect(cos t + i sin t)

and
y2(t) = beλ2t = be(c−i)t = bect(cos t − i sin t),

where a and b can be any (complex) constants. In equation (1), because ~v1 and ~v2 are
constant vectors, for all solutions ~x(t) → 0 as t → ∞ , we need that the |yj(t)| → 0. But since
|cos t ± i sin t| = 1, then

|yj(t)| = ect|cos t ± i sin t| = ect.

Because c is a real number, ect → 0 as t → ∞ if (and only if) c < 0.
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