ODE-Diagonalize: Examples

Example 1 Let $A:=\left(\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right)$ and $\vec{x}(t)=\binom{x_{1}(t)}{x_{2}(t)} . \quad$ Solve

$$
\begin{equation*}
\frac{d \vec{x}}{d t}=A \vec{x} \quad \text { with } \quad \vec{x}(0)=\binom{1}{0} . \tag{1}
\end{equation*}
$$

Solution: The key observation is that if A were a diagonal matrix, this would be simple. Thus we begin by finding the eigenvalues ad eigenvectors of A. By an easy calculation

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-8 \lambda+15=(\lambda-3)(\lambda-5)
$$

Thus the eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=5$ with corresponding eigenvectors $\vec{v}_{1}=\binom{1}{-1}$ and $\vec{v}_{2}=\binom{1}{1}$. From here we can proceed in two slightly different ways.
Method 1 Observe that A is similar to the diagonal matrix $D=\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)$, that is, $S^{-1} A S=D$, where $S=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$ has the corresponding eigenvectors as its columns. Thus $A=S D S^{-1}$.
We now use this in our differential equation: $\vec{x}^{\prime}(t)=S D S^{-1} \vec{x}$. Multiply both sides by S^{-1}. Since S does not depend on $t,\left(S^{-1} \vec{x}(t)\right)^{\prime}=D S^{-1} \vec{x}$. This is simpler to use if we let $\vec{y}(t)=S^{-1} \vec{x}$. Then the differential equation becomes

$$
\frac{d \vec{y}(t)}{d t}=D \vec{y}(t)
$$

that is,

$$
\binom{y_{1}^{\prime}(t)}{y_{2}^{\prime}(t)}=\left(\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right)\binom{y_{1}(t)}{y_{2}(t)}=\binom{3 y_{1}(t)}{5 y_{2}(t)} .
$$

These are uncoupled differential equations, $y_{1}^{\prime}=3 y_{1}, y_{2}^{\prime}=4 y_{2}$, that one can solve immediately giving

$$
y_{1}(t)=a e^{3 t}, \quad y_{2}(t)=b e^{5 t},
$$

for any constants a and b.
It remains to return to restate this in terms of $\vec{x}(t)$

$$
\vec{x}(t)=S \vec{y}(t)=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{a e^{3 t}}{b e^{5 t}}=\binom{a e^{3 t}+b e^{5 t}}{-a e^{3 t}+b e^{5 t}}
$$

We use the initial condition to determine the constants a and b.

$$
\binom{1}{0}=\vec{x}(0)=\binom{a+b}{-a+b} .
$$

Thus $a=b=1 / 2$. Therefore

$$
\vec{x}(t)=\frac{1}{2}\binom{e^{3 t}+e^{5 t}}{-e^{3 t}+e^{5 t}} .
$$

METHOD 2 Since the eigenvectors \vec{v}_{1} and \vec{v}_{2} are a basis for \mathbb{R}^{2}, given any $\vec{x}(t)$, there are functions $y_{1}(t)$ and $y_{2}(t)$ so that

$$
\begin{equation*}
\vec{x}(t)=y_{1}(t) \vec{v}_{1}+y_{2}(t) \vec{v}_{2} . \tag{2}
\end{equation*}
$$

We now plug this in the differential equation $\vec{x}^{\prime}=A \vec{x}$. The left side becomes

$$
\vec{x}^{\prime}(t)=y_{1}^{\prime}(t) \vec{v}_{1}+y_{2}^{\prime}(t) \vec{v}_{2},
$$

and the more interesting right side becomes

$$
A \vec{x}=3 y_{1} \vec{v}_{1}+5 y_{2} \vec{v}_{2} .
$$

Comparing the coefficients of \vec{v}_{1} and \vec{v}_{2} in the last two equations we conclude that

$$
y_{1}^{\prime}=3 y_{1} \quad \text { and } \quad y_{2}^{\prime}=5 y_{2} .
$$

Their solutions are

$$
y_{1}(t)=a e^{3 t} \quad \text { and } \quad y_{2}(t)=b e^{5 t}
$$

for any constants a and b. Using this in equation (2) we find

$$
\vec{x}(t)=a e^{3 t}\binom{1}{-1}+b e^{5 t}\binom{1}{1} .
$$

Finally, use the initial condition to determine a and b :

$$
\binom{1}{0}=\vec{x}(0)=a\binom{1}{-1}+b\binom{1}{1} .
$$

This gives $a=b=1 / 2$. Therefore

$$
\vec{x}(t)=\frac{1}{2}\left[e^{3 t}\binom{1}{-1}+e^{5 t}\binom{1}{1}\right] .
$$

Example 2 Let $A:=\left(\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right)$ and $\vec{x}(t)=\binom{x_{1}(t)}{x_{2}(t)} . \quad$ Solve

$$
\begin{equation*}
\frac{d^{2} \vec{x}}{d t^{2}}=A \vec{x} \quad \text { with } \quad \vec{x}(0)=\binom{2}{0} \quad \text { and } \quad \vec{x}^{\prime}(0)=\binom{0}{0} . \tag{3}
\end{equation*}
$$

Solution: This is the sameas equation (1) except that here we have a second derivative. Both of the methods used in Example 1 work here with essentially no change. We'll use Method 2. Since the eigenvectors \vec{v}_{1} and \vec{v}_{2} of A are a basis for \mathbb{R}^{2}, given any $\vec{x}(t)$, there are functions $y_{1}(t)$ and $y_{2}(t)$ so that

$$
\begin{equation*}
\vec{x}(t)=y_{1}(t) \vec{v}_{1}+y_{2}(t) \vec{v}_{2} . \tag{4}
\end{equation*}
$$

We now plug this in the differential equation $\vec{x}^{\prime \prime}=A \vec{x}$. The left side becomes

$$
\vec{x}^{\prime \prime}(t)=y_{1}^{\prime \prime}(t) \vec{v}_{1}+y_{2}^{\prime \prime}(t) \vec{v}_{2},
$$

and the more interesting right side becomes

$$
A \vec{x}=3 y_{1} \vec{v}_{1}+5 y_{2} \vec{v}_{2} .
$$

Comparing the coefficients of \vec{v}_{1} and \vec{v}_{2} in the last two equations we conclude that

$$
y_{1}^{\prime \prime}=3 y_{1} \quad \text { and } \quad y_{2}^{\prime \prime}=5 y_{2}
$$

Both of these equations have the form $u^{\prime \prime}=k^{2} u$ whose general solution is

$$
u(t)=c_{1} e^{k t}+c_{2} e^{-k t} .
$$

Thus

$$
\begin{aligned}
& y_{1}(t)=a e^{\sqrt{3} t}+b e^{-\sqrt{3} t} \\
& y_{2}(t)=c e^{\sqrt{5} t}+d e^{-\sqrt{5} t}
\end{aligned}
$$

for any choice of the constants a, b, c and d. Plug this into equation (4) to find

$$
\vec{x}(t)=\left(a e^{\sqrt{3} t}+b e^{-\sqrt{3} t}\right)\binom{1}{-1}+\left(c e^{\sqrt{5} t}+d e^{-\sqrt{5} t}\right)\binom{1}{1} .
$$

We use the initial conditions to determine the constants a, b, c and d :

$$
\left.\left.\binom{2}{0}=\vec{x}(0)=(a+b)\right)\binom{1}{-1}+(c+d)\right)\binom{1}{1},
$$

and

$$
\binom{0}{0}=\vec{x}^{\prime}(0)=(a-b) \sqrt{3}\binom{1}{-1}+(c-d) \sqrt{5}\binom{1}{1} .
$$

Therefore, by a routine computation, $a=b=c=d=\frac{1}{2}$ so

$$
\begin{aligned}
\vec{x}(t) & =\frac{1}{2}\left(e^{\sqrt{3} t}+e^{-\sqrt{3} t}\right)\binom{1}{-1}+\frac{1}{2}\left(e^{\sqrt{5} t}+e^{-\sqrt{5} t}\right)\binom{1}{1} \\
& =\cosh (\sqrt{3} t)\binom{1}{-1}+\cosh (\sqrt{5} t)\binom{1}{1} \\
& =\binom{\cosh (\sqrt{3} t)+\cosh (\sqrt{5} t)}{-\cosh (\sqrt{3} t)+\cosh (\sqrt{5} t)}
\end{aligned}
$$

Note that any of the last three lines are valid formulas for the solution $\vec{x}(t)$, Your preference depends on what you will next do with the solution.

