ODE-Diagonalize: Examples

L 4 1 . . xl(t)
EXAMPLE 1 Let A := <1 4) and Z(t) = <x2(t))' Solve

d
A7 with  #0) = <1) . (1)
dt

SoLUTION: The key observation is that if A were a diagonal matrix, this would be simple. Thus
we begin by finding the eigenvalues ad eigenvectors of A. By an easy calculation

det(A — M) =X =8\ +15= (A —3)(A - 5).

1
Thus the eigenvalues are \;y = 3 and A9 = 5 with corresponding eigenvectors 77 = (_1> and

Uy = <1) . From here we can proceed in two slightly different ways.

30

METHOD 1 Observe that A is similar to the diagonal matrix D = < 0 5

> , that is, STAS = D,

11
-1 1
We now use this in our differential equation: Z’(t) = SDS~'#. Multiply both sides by S~!. Since
S does not depend on t, (S71#(t))’ = DS~1Z. This is simpler to use if we let (t) = S~!Z. Then
the differential equation becomes

() =0 3) () = Gnte)-

These are uncoupled differential equations, v} = 3y1, vh = 4y2, that one can solve immediately
giving

where S = < ) has the corresponding eigenvectors as its columns. Thus A = SDS™!.

that is,

y1(t) = ae™, ya(t) = be™,

for any constants a and b.
It remains to return to restate this in terms of Z(t)

. . 1 1 ae3t ae3t + pedt
) =500 = (_y 1) (heoe) = (L)

We use the initial condition to determine the constants a and b.
N . _[(a+b
(o) =70= (555).

. 1 63t +e5t
T(t) = B <_63t LBt

Thus a = b = 1/2. Therefore



METHOD 2 Since the eigenvectors #; and @ are a basis for R?, given any #(¢), there are functions
y1(t) and ya(t) so that
Z(t) = y1 (1)1 + ya(t) V. (2)

We now plug this in the differential equation Z’ = AZ. The left side becomes
7' (t) =y ()01 + o ()2,
and the more interesting right side becomes
AZ = 3y17U1 + Syas.
Comparing the coefficients of ¥ and v in the last two equations we conclude that
yi=3y1 and  yh= by,

Their solutions are

y1(t) = ae and Yo (t) = be™

for any constants a and b. Using this in equation (2) we find

#(t) = ac® (_1) bes! G) .

Finally, use the initial condition to determine a and b:

(§-m=r( ()

This gives a = b =1/2. Therefore

L 4 1 N o xl(t)
EXAMPLE 2 Let A:= <1 4) and Z(t) = (xg(t))' Solve

2 =
ZTf — A7 with  F(0) = (3) and  3'(0) = (8) . (3)
SOLUTION: This is the sameas equation (1) except that here we have a second derivative. Both
of the methods used in Example 1 work here with essentially no change. We’ll use Method 2.
Since the eigenvectors #; and @ of A are a basis for R?, given any #(t), there are functions y; (t)
and y2(t) so that

T(t) = y1 ()01 + y2(t) 2. (4)

We now plug this in the differential equation Z” = AZ. The left side becomes

2"(t) = yi ()01 + y5 (1) 02,



and the more interesting right side becomes
AZ = 3y17U1 4 Byas.
Comparing the coefficients of ¥; and ¥ in the last two equations we conclude that
y/ =3y  and  yj = 5y
Both of these equations have the form u” = k?u whose general solution is
kt

u(t) = cref 4 coe”

Thus f
y1(t) —qeV3 4 pe V3!

ya(t) —ceV5t 4 dem VP!

for any choice of the constants a, b, ¢ and d. Plug this into equation (4) to find

F(t) = (aeV3! + beV3Y) (_1) + (ce¥Bt 4 de V51 G) :

We use the initial conditions to determine the constants a, b, ¢ and d:

(3) = 7(0) = (a+1)) <_1> +(c+d)) G) ,

(8) —#(0) = (a—b)V3 (_1) +(c—d)VE G) .

1
2

7(t) =2 (V3 4 VY ( 1) + LoVt 4 o~ VEYy (1>

and

Therefore, by a routine computation, a =b=c=d = 5 so

2 —1 2 1
— cosh(V31) <_i) + cosh(v/5 1) <1)

1
- ( cosh(v/31t) + cosh(ﬁt))
~ \—cosh(v/3t) + cosh(v/5 1)

Note that any of the last three lines are valid formulas for the solution Z(¢), Your preference
depends on what you will next do with the solution.



