
Math 312, Spring 2014 Jerry L. Kazdan

Singular Value Decomposition

Positive Definite Matrices

Let C be an n×n positive definite (symmetric) matrix and consider

the quadratic polynomial 〈x, Cx〉. How can we understand what

this“looks like”? One useful approach is to view the image of the

unit sphere, that is, the points that satisfy ‖x‖ = 1. For instance, if

〈x, Cx〉 = 4x2
1 + 9x2

2 , then the image of the unit disk, x2
1 + x2

2 = 1,

is an ellipse.

For the more general case of 〈x, Cx〉 it is fundamental to use coor-

dinates that are adapted to the matrix C . Since C is a symmetric

matrix, there are orthonormal vectors v1 , v2 ,. . . , vn in which C

is a diagonal matrix. These vectors vj are eigenvectors of C with

corresponding eigenvalues λj : so Cvj = λjvj . In these coordinates,

say

x = y1v1 + y2v2 + · · · + ynvn. (1)

and

Cx = λ1y1v1 + λ2y2v2 + · · · + λnynvn. (2)

Then, using the orthonormality of the vj ,

‖x‖2 = 〈x, x〉 = y2
1 + y2

2 + · · · + y2
n

and

〈x, Cx〉 = λ1y
2
1 + λ2y

2
2 + · · · + λny

2
n. (3)
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For use in the singular value decomposi-

tion below, it is conventional to number

the eigenvalues in decreasing order:

λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin,

so on the unit sphere ‖x‖ = 1

λmin ≤ 〈x, Cx〉 ≤ λmax.

As in the figure, the image of the unit

sphere is an “ellipsoid” whose axes are

in the direction of the eigenvectors and

the corresponding eigenvalues give half the

length of the axes.

There are two closely related approaches to using that a self-adjoint

matrix C can be orthogonally diagonalized.

Method 1: Use that there is an orthogonal matrix R (whose

columns are the orthonormal eigenvectors of C ) and a diagonal ma-

trix Λ (with the corresponding eigenvalues of C on the diagonal) so

that

C = RΛR∗ (4)

. Then, letting ~y = R∗~x we have

〈x, Cx〉 =〈x, RΛR∗x〉 = 〈R∗x, ΛR∗x〉
=〈y, Λy〉 = λ1y

2
1 + λ2y

2
2 + · · · + λny

2
n

just as in equation (3).

Method 2: Use that Rn has a basis of orthonormal eigenvectors

v1 ,. . . ,vn and corresponding eigenvalues λ1 ,. . . ,λn . This is what we

did in equations (1)-(3). For me, Method 2 is usually more intuitive.
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It is illuminating to rewrite equation (2) using the formula yj =

〈vj, x〉 in equation (1). Thinking of vj and x as column vectors,

then 〈vj, x〉 is the same as the matrix product v∗jx so

yjvj = vj〈vj, x〉 = vj(v
∗
jx) = (vjv

∗
j )x (5)

so

Cx =
∑

λj(vjv
∗
j )x, that is, C =

∑
λj(vjv

∗
j ) (6)

Notice that the matrices vjv
∗
j each have rank one.

Singular Value Decomposition

We will use this to help understand an m×n matrix A : Rn → Rm .

We will assume that m ≥ n. Let r = rank (A). Note r ≤ n. This

matrix A is not assumed to be symmetric – or even square. We want

to measure how the size of ‖Ax‖ changes as x moves around the

unit sphere, ‖x‖ = 1 in Rn . For instance,

• What is the largest that ‖Ax‖ can be? In what direction x is

‖Ax‖ largest?

• What is the smallest that ‖Ax‖ can be? In what direction x is

‖Ax‖ smallest?

• How does size of Ax vary with the direction of x?

To answer these we observe that

‖Ax‖2 = 〈Ax, Ax〉 = 〈x, (A∗A)x〉.

Thus we can answer our questions by investigating the simpler n×n
positive semi-definite symmetric matrix C = A∗A – which is what

we just did at the top of this page. As above, let λj ≥ 0 and vj
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be the eigenvalues and corresponding orthonormal eigenvectors of

C = A∗A. Then on the sphere ‖x‖ = 1

max‖Ax‖2 =λ1 is at x = v1

min‖Ax‖2 =λn is at x = vn

Because of the squares on the left side, we let σj =
√
λj . These

σj ’s are called the singular values of A, so we have ‖Avj‖ = σj
and

σn ≤ σn−1 ≤ · · · ≤ σ1. On ‖x‖ = 1, σn ≤ ‖Ax‖ ≤ σ1.

We define the vectors uj ∈ Rm as the images of the eigenvectors vj :

Avj = σjuj, j = 1, . . . , r := rank (A). (7)

Note that if σj = 0, then the above does not define uj = Avj/σj
because it would involve division by zero. However, for j = 1, . . . , r ,

since the vj are orthonormal, then so are the uj because

〈ui, uj〉 =
〈Avi, Avj〉

σiσj
= 〈vi, vj〉.

We can now extend the orthonormal vectors uj, j = 1, . . . , r to

an orthonormal basis u1, . . . ,ur , ur+1, . . . ,um for Rm . Also let V
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be the n × n matrix whose columns are the orthonormal eigenvec-

tors vj, j = 1, . . . , n. This gives us two orthogonal matrices: V ,

an n × n matrix whose columns are the orthonormal eigenvectors

vj, j = 1, . . . , n and U , an m ×m matrix whose columns are the

orthonormal vectors uk, k = 1, . . . ,m. Finally let Σ be the m× n
“diagonal” matrix

Σ :=



σ1

σ2
. . .

σn
0 0 0 · · · 0
... ... ... ... ...

0 0 0 · · · 0


whose last m − n rows are all zeroes. Note also that σr+1 = · · · =

σn = 0.

Assembling these pieces from equation (7) we find

AV = UΣ (8)
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that is, A



v1


v2


· · ·


vn




=



u1



u2



· · ·


um−1



um







σ1

σ2
. . .

σn
0 0 · · · 0
... ... ... ...

0 0 · · · 0


.

Since V is an orthogonal matrix, V −1 = V ∗ so equation (8) can be

rewritten as

A = UΣV ∗. (9)

This version of the Singular Value Decomposition is the analog of

equation (4) for self-adjoint matrices. See the example just below.

The following is an equivalent version of SVD that is quite similar to

equation (6) for self-adjoint matrices. It uses that σk = 0 for k > r .

A = σ1u1v
∗
1 + σ2u2v

∗
2 + · · · + σrurv

∗
r . (10)

To verify this we begin with equation (2) and use equation (5) to find

x =
∑

vi〈vi, x〉 =
∑

vi(v
∗
ix).

Therefore, using Avi = σiui for i ≤ r while Avi = 0 for i > r , we
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obtain

Ax =

n∑
1

Avi(v
∗
ix) =

r∑
1

σiuiv
∗
ix.

This is exactly equation (10).

The matrices ujv
∗
j each have rank 1. It is significant that since

σk = 0 for k > r , this does not involve uk or vk for k > r . In

a sense that can be made precise, the sum of the first k matrices

here is the matrix of rank k that best approximates A. This is

called the principal component analysis of A.

Example Before going further, it is essential that we compute an

explicit example.

a). Find the singular value decomposition (SVD) of A :=

−1 0

1 −1

0 1


in both versions of equations (9) and (10).

b). Find the best rank 1 approximation to A.

Solution: By a routine computation, the matrix A∗A =

(
2 −1

−1 2

)
has eigenvalues 3 and 1 with corresponding eigenvectors

(
1

−1

)
and(

1

1

)
. The singular values of A are σ1 =

√
3 and σ2 =

√
1 = 1

with corresponding orthonormal eigenvectors v1 =

(
1/
√

2

−1/
√

2

)
and

v2 =

(
1/
√

2

1/
√

2

)
. Note that it is traditional to label these so that σ1

is the largest singular value. [If you number these differently, then
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you must use a consistent convention in part b) since the best rank 1

approximation is always associated with the largest singular value.]

Then the orthonormal uj ’s are

u1 =
Av1√

3
=

1√
3

−1 0

1 −1

0 1

( 1/
√

2

−1/
√

2

)
=

1√
6

−1

2

−1

 ,

u2 =
Av2

1
=

−1 0

1 −1

0 1

(1/
√

2

1/
√

2

)
=

1√
2

−1

0

1

 .

The SVD of A is A = UΣV T , where U is an orthogonal 3 × 3

matrix whose columns are u1 , u2 , and u3 with u3 a unit vector

orthogonal to u1 and u2 (we never need to compute u3 explicitly),

V an orthogonal 2× 2 matrix whose columns are v1 and v2 , and Σ

a 3× 2 matrix containing the singular values of A. Thus

U =

−1/
√

6 −1/
√

2 ...

2/
√

6 0 u3

−1/
√

6 1/
√

2 ...

 , Σ :=


√

3 0

0 1

0 0

 , V :=

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
.

The (equivalent) singular value decomposition of A as in equation

(10) is then

A = σ1u1v
T
1 + σ2u2v

T
2 =

√
3√
6

−1

2

−1

 1√
2

(
1 −1

)
+

1√
2

−1

0

1

 1√
2

(
1 1
)

=
1

2

−1 1

2 −2

−1 1

 +
1

2

−1 −1

0 0

1 1


(11)
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b). To find the best rank 1 approximation to A, from equation (11),

it is σ1u1v
T
1 =

1

2

−1 1

2 −2

−1 1


Bird Example [based on notes by J. Jauregui]

This example and data is courtesy of Adam Kapelner, from Wharton

Statistics. Adam used Sibley’s Bird Database of North American

birds to gather data on a simple random sample of 100 bird species.

Three factors were measured: length (inches), wingspan (inches),

and weight (ounces). Thus, in the data matrix A n = 3 and m =

100, so A is a 100 × 3 matrix. For each of the three columns we

subtracted the mean. Thus the average of each column of A is zero.

We imagine plotting the data in A as a cloud of 100 points in a three

dimensional space. We are seeking a pattern. Does the data cluster

around a line? Does it cluster around a plane – or is it scattered like

a random cloud?

We use the singular value decomposition to help. Let S = A∗A,

which is the 3× 3 matrix

S =

91.43 171.92 297.99

373.92 545.21

1297.26


As is customary, the entries below the diagonal were omitted, since

the matrix is symmetric. We can use MATLAB or octave 1, for

instance, to compute the eigenvalues and orthonormal eigenvectors

of S . In this case:

λ1 = 1626.52, λ2 = 128.99, λ3 = 7.10
1octave is a free, open source alternative to MATLAB.
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so the singular values of A are the square roots

σ1 = 40.3, σ2 = 14.4, σ3 = 2.67.

while the eigenvectors of S are

v1 =

0.22

0.41

0.88

 , v2 =

 0.25

0.85

−0.46

 , v3 =

 0.94

−0.32

−0.08


The first thing to notice is that σ1 is much larger than σ2 and σ3 .

In fact, the first v1 principal component accounts for a significant

amount of the variation in the data while the second v2 accounts for

less and the remaining principal component, explaining only a small

amount of the data. It is negligible compared to the first two.

Now, how to interpret all of this? In studying the sizes (length,

wingspan, weight) of North American birds, there are apparently

only two factors that are important (corresponding to v1 and v2).

We might think of v1 as giving a generalized notion of “size” that

incorporates length, wingspan, and weight. Indeed, all three entries

of v1 have the same sign, indicating that birds with larger “size”

tend to have larger length, wingspan, and weight.

We could also ask: which of the factors (length, wingspan, weight) is

most significant in determining a bird’s “size”? In other words, does

the first principal component v1 point the most in the direction of

the length axis, the wingspan axis, or the weight axis in R3? Well,

the third entry, weight, of u1 is the largest, so weight is the most

significant. This means a change in one unit of weight tends to affect

the size more so than a change in one unit of length or wingspan. The

second entry of v1 is the next largest, which corresponds to wingspan.
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Thus, wingspan is the next most important factor in determining a

bird’s size (followed lastly by length).

Now, what does the second principal component mean? It is mostly

influenced by wingspan and weight, as these entries in v2 have the

greatest absolute values. However, they also have opposite signs.

This indicates that v2 describes a feature of birds corresponding to

relatively small wingspan and large weight, or vice versa. We might

call this quality “stoutness.”

For each of these birds, is the “size” large or small? What about the “stoutness”?

In other words, to a very good approximation, this sample of North

American birds is described by only two parameters: the “size” (most

important) and the “stoutness” (less important). We discovered this

by looking at the eigenvalues λj (or singular values, σj) and the

corresponding eigenvectors vj of the matrix S = A∗A.

Noise in Data

If

A =

1 1 −1

2 2 −2

3 3 −3

 and B =

1.00001 1 −1

2 2.00001 −2

3 3 −3.00001

 ,
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then A has rank 1 while B has rank 3 We should probably view B

as essentially the same as A except for some noise. This is revealed

if we compute the singular values of B . We find

σ1 = 6.481, σ2 ≈ σ3 ≈ 0.000001.

This is a very simple example showing how a singular value decom-

position can help reveal the essential structure of data.

Last Revised June 30, 2020
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