Problem Set 1

DuE: In class Thursday, Jan. 23. Late papers will be accepted until 1:00 PM Friday.
These problems are intended to be straightforward with not much computation. I warmly suggest that you discuss these problems with others in the class.
Remark: Before class on Tuesday please read all of Chapters 1 and 2 in the text. Essentially it should be a review from Math 240.

1. Let $A=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$. Compute the inverse of A and of A^{2}.
2. Solve all of the following equations. [Note that the left sides of these equations are identical.]
a). $2 x+5 y=5$
b). $2 x+5 y=0$
c). $2 x+5 y=1$
d). $2 x+5 y=2$
$x+3 y=-1$
$x+3 y=-2$
$x+3 y=0$
$x+3 y=1$
3. [Bretscher, Sec.2.1 \#13] Finding the inverse of a matrix A means solving the system of equations $A \vec{x}=\vec{y}$ for \vec{x}, so $\vec{x}=A^{-1} \vec{y}$.
a) Let $A:=\left(\begin{array}{ll}1 & 2 \\ c & 6\end{array}\right)$. With your bare hands (as on page 2 of the textbook - not using anything about determinants) show that A is invertible if and only if $c \neq 3$.
b) Let $M:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. With your bare hands (not using anything about determinants) show that M is invertible if and only if $a d-b c \neq 0$. [Hint: Treat the cases $a \neq 0$ and $a=0$ separately.]
4. Let A and B be 2×2 matrices.
a) If B is invertible and $A B=0$, show that $A=0$.
b) Give an example where $A B=0$ but $B A \neq 0$.
c) Find an example of a 2×2 matrix with the property that $A^{2}=0$ but $A \neq 0$.
d) Find all invertible $n \times n$ matrices A with the property $A^{2}=3 A$.
5. [Bretscher, Sec.2.3 \#19] Find all the matrices that commute with $A:=\left(\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right)$.
6. a) Find a real 2×2 matrix A (other than $A= \pm I$) such that $A^{2}=I$.
b) Find a real 2×2 matrix A such that $A^{4}=I$ but $A^{2} \neq I$.
7. Let L, M, and P be linear maps from the $\left(x_{1}, x_{2}\right)$ plane to the $\left(y_{1}, y_{2}\right)$ plane:
L is rotation by 90 degrees counterclockwise.
M is reflection across the line $x_{1}=x_{2}$.
$N \vec{v}:=-\vec{v}$ for any vector $\vec{v} \in \mathbb{R}^{2}$.
a) Find matrices representing each of the linear maps L, M, and N.
b) Draw pictures describing the actions of the maps L, M, and N and the compositions: $L M, M L, L N, N L, M N$, and $N M$.
c) Which pairs of these maps commute?
d) Which of the following identities are correct-and why?
1) $L^{2}=N$
2) $\quad N^{2}=I$
3) $\quad L^{4}=I$
4) $L^{5}=L$
5) $M^{2}=I$
6) $\quad M^{3}=M$
7) $\quad M N M=N$
8) $N M N=L$
8. a) Find a 2×2 matrix that rotates the plane by +45 degrees (+45 degrees means 45 degrees counterclockwise).
b) Find a 2×2 matrix that rotates the plane by +45 degrees followed by a reflection across the horizontal axis.
c) Find a 2×2 matrix that reflects across the horizontal axis followed by a rotation the plane by +45 degrees.
d) Find a matrix that rotates the plane through +60 degrees, keeping the origin fixed.
e) Find the inverse of each of these maps.
9. Let A be a matrix, not necessarily square. Say \mathbf{V} and \mathbf{W} are particular solutions of the equations $A \mathbf{V}=\mathbf{Y}_{1}$ and $A \mathbf{W}=\mathbf{Y}_{2}$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A \mathbf{Z}=0$. Answer the following in terms of \mathbf{V}, \mathbf{W}, and \mathbf{Z}.
a) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1}$.
b) Find some solution of $A \mathbf{X}=-5 \mathbf{Y}_{2}$.
c) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2}$.
d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A \mathbf{X}=0$.
e) Find two solutions of $A \mathbf{X}=\mathbf{Y}_{1}$.
f) Find another solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2}$.
g) If A is a square matrix, then $\operatorname{det} A=$?
h) If A is a square matrix, for any given vector \mathbf{W} can one always find at least one solution of $A \mathbf{X}=\mathbf{W}$? Why?

1[Last revised: January 16, 2014]

