Problem Set 1

DUE: In class Thursday, Jan. 23. Late papers will be accepted until 1:00 PM Friday.

These problems are intended to be straightforward with not much computation. I warmly suggest that you discuss these problems with others in the class.

REMARK: Before class on Tuesday please read *all* of Chapters 1 and 2 in the text. Essentially it should be a review from Math 240.

1. Let
$$A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
. Compute the inverse of A and of A^2 .

2. Solve all of the following equations. [Note that the left sides of these equations are identical.]

a). 2x + 5y = 5 b). 2x + 5y = 0 c). 2x + 5y = 1 d). 2x + 5y = 2x + 3y = -1 x + 3y = -2 x + 3y = 0 x + 3y = 1

- 3. [Bretscher, Sec.2.1 #13] Finding the inverse of a matrix A means solving the system of equations $A\vec{x} = \vec{y}$ for \vec{x} , so $\vec{x} = A^{-1}\vec{y}$.
 - a) Let $A := \begin{pmatrix} 1 & 2 \\ c & 6 \end{pmatrix}$. With your bare hands (as on page 2 of the textbook not using anything about determinants) show that A is invertible if and only if $c \neq 3$.
 - b) Let $M := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. With your bare hands (not using anything about determinants) show that M is invertible if and only if $ad bc \neq 0$. [*Hint:* Treat the cases $a \neq 0$ and a = 0 separately.]
- 4. Let A and B be 2×2 matrices.
 - a) If B is invertible and AB = 0, show that A = 0.
 - b) Give an example where AB = 0 but $BA \neq 0$.
 - c) Find an example of a 2×2 matrix with the property that $A^2 = 0$ but $A \neq 0$.
 - d) Find all *invertible* $n \times n$ matrices A with the property $A^2 = 3A$.
- 5. [Bretscher, Sec.2.3 #19] Find all the matrices that commute with $A := \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$.
- 6. a) Find a real 2×2 matrix A (other than $A = \pm I$) such that $A^2 = I$.
 - b) Find a real 2×2 matrix A such that $A^4 = I$ but $A^2 \neq I$.

7. Let L, M, and P be linear maps from the (x_1, x_2) plane to the (y_1, y_2) plane: L is rotation by 90 degrees counterclockwise. M is reflection across the line $x_1 = x_2$. $N\vec{v} := -\vec{v}$ for any vector $\vec{v} \in \mathbb{R}^2$.

- a) Find matrices representing each of the linear maps L, M, and N.
- b) Draw pictures describing the actions of the maps L, M, and N and the compositions: LM, ML, LN, NL, MN, and NM.
- c) Which pairs of these maps commute?
- d) Which of the following identities are correct—and why?
 - 1) $L^2 = N$ 2) $N^2 = I$ 3) $L^4 = I$ 4) $L^5 = L$ 5) $M^2 = I$ 6) $M^3 = M$ 7) MNM = N 8) NMN = L
- 8. a) Find a 2×2 matrix that rotates the plane by +45 degrees (+45 degrees means 45 degrees *counterclockwise*).
 - b) Find a 2×2 matrix that rotates the plane by +45 degrees followed by a reflection across the horizontal axis.
 - c) Find a 2×2 matrix that reflects across the horizontal axis followed by a rotation the plane by +45 degrees.
 - d) Find a matrix that rotates the plane through +60 degrees, keeping the origin fixed.
 - e) Find the inverse of each of these maps.
- 9. Let A be a matrix, not necessarily square. Say V and W are particular solutions of the equations $AV = Y_1$ and $AW = Y_2$, respectively, while $Z \neq 0$ is a solution of the homogeneous equation AZ = 0. Answer the following in terms of V, W, and Z.
 - a) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1$.
 - b) Find some solution of $A\mathbf{X} = -5\mathbf{Y}_2$.
 - c) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.
 - d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A\mathbf{X} = 0$.
 - e) Find *two* solutions of $A\mathbf{X} = \mathbf{Y}_1$.
 - f) Find another solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.
 - g) If A is a square matrix, then $\det A = ?$
 - h) If A is a square matrix, for any given vector \mathbf{W} can one always find at least one solution of $A\mathbf{X} = \mathbf{W}$? Why?

1[Last revised: January 16, 2014]