Problem Set 10

Due: In class Thursday, Thurs. April 17 Late papers will be accepted until 1:00 PM Friday.

For the coming week, please re-read Chapter 8.1-8.2 in the text and the notes:
http://www.math.upenn.edu/~kazdan/312F12/notes/quadratic/quadratic.pdf Quadratic Polynomials
http://www.math.upenn.edu/~kazdan/312F12/notes/max-min-notesJan09/max-min.pdf
and
http://www.math.upenn.edu/~kazdan/312S13/notes/MultInt1.pdf Change of Variable in a Multiple Integral.

1. [Bretscher, Sec. 8.1 \#13] Consider a symmetric 3×3 matrix A with $A^{2}=I$ but $A \neq I$.Is A necessarily the reflection across a subspace of \mathbb{R}^{3} ?
2. [Bretscher, Sec. 8.2 \#18] Sketch the curve of points in the plane that satisfy $9 x_{1}^{2}-4 x_{1} x_{2}+6 x_{2}^{2}=1$.
3. Let $A:=\left(\begin{array}{llll}3 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
a) Find the eigenvalues and eigenvectors of A.
b) Find an orthogonal transformation R so that $R^{-1} A R$ is a diagonal matrix.
4. Let $A=\left(a_{i j}\right)$ be an $n \times n$ symmetric matrix. Show that if the constant c is sufficiently large, then the matrix $B:=A+c I$ is positive definite.
5. [Bretscher, Sec. 8.2 \#56] Let $A=\left(a_{i j}\right)$ be a real symmetric matrix. Show there is an eigenvalue λ such that $\lambda \geq a_{11}$.
6. Let $\lambda_{\max }$ be the largest eigenvalue of the real symmetric matrix A. Show that

$$
\lambda_{\max }=\max \frac{\langle\vec{x}, A \vec{x}\rangle}{\|\vec{x}\|^{2}}
$$

for all vectors $\vec{x} \neq 0$.
7. Let C be a real symmetric matrix. If $\langle\vec{x}, C \vec{x}\rangle=0$ for all vectors \vec{x}, show that $C=0$.
8. If the symmetric matrix A is positive definite, show that $\operatorname{det} A>0$. In particular, if $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ is positive definite, then $a c-b^{2}>0$.
9. Let $A=\left(a_{i j}\right)$ be a positive definite $n \times n$ matrix.
a) For any integer $k, 1 \leq k \leq n$, show that the 1×1 matrix $C:=\left(a_{k k}\right)$ is positive definite. Why does this show that the diagonal elements of a positive definite matrix must be positive?
b) For any integers $k, \ell, 1 \leq k<\ell \leq n$, show that the 2×2 matrix $M:=\left(\begin{array}{ll}a_{k k} & a_{k \ell} \\ a_{k \ell} & a_{\ell \ell}\end{array}\right)$ is positive definite - and hence that $a_{k k} a_{\ell \ell}-a_{k \ell}^{2}>0$.
c) If $1 \leq k \leq n$, show that the $k \times k$ sub-matrix consisting only of the first k rows and columns of A is positive definite.
10. a) Let $D:=\left(\begin{array}{cc}4 & 0 \\ 0 & 25\end{array}\right)$ Find a positive definite symmetric matrix P so that $P^{2}=D$ (we call P the square root of D)
b) Let $A:=\left(\begin{array}{cc}10 & 6 \\ 6 & 10\end{array}\right)$. Find a positive definite (symmetric) matrix P so that $P^{2}=$ A.
c) Show that every positive definite symmetric matrix A has a positive definite square root.
11. Just as we can write and complex number $z \neq 0$ in the polar form $z=r e^{i \theta}$, we can write any real invertible matrix A in the form $A=P R$, where P is positive definite and R is an orthogonal matrix, by the following steps:
a) If, A is invertible, show that $A A^{*}$ is positive definite and hence, by problem 10c, there is a positive definite matrix P so that $A A^{*}=P^{2}$.
b) Using this P, let $R:=P^{-1} A$. Show that $R R^{*}=I$, and hence that R is an orthogonal matrix. Thus $A=P R$, as desired.
12. [Bretscher, Sec. $8.1 \# 38]$ Let A be a symmetric 2×2 matrix with eigenvalues -2 and 3 and $\vec{u} \in \mathbb{R}^{2}$ any unit vector. What are the possible values of $\langle\vec{u}, A \vec{u}\rangle$? Illustrate your answer in terms of the unit circle and its image under A.
13. Let A be a 3×3 matrix whose eigenvalues are $-1 \pm i$ and -2 . If $\vec{x}(t)$ is a solution of $\frac{d \vec{x}}{d t}=A \vec{x}$, show that $\lim _{t \rightarrow \infty} \vec{x}(t)=0$ independent of the initial value $\vec{x}(0)$.
14. Let $f(x, y)=\left(x^{2}+4 y^{2}\right) e^{1-x^{2}-y^{2}}$. Find and classify all of the critical points of f as local maxima, minima, or saddles.
15. Let $A:=\left(\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right)$. Solve $\frac{d^{2} \vec{x}(t)}{d t^{2}}+A \vec{x}(t)=0$ with $\vec{x}(0)=\binom{1}{0}$ and $\vec{x}^{\prime}(0)=\binom{0}{0}$. [REmark: If A were the diagonal matrix $\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$, then this problem would have been simple. This problem assumes you know how to solve scalar ordinary differential equations like $u^{\prime \prime}+25 u=0$ and $u^{\prime \prime}-25 u=0$. Review your Math 240 text.]
16. a) Compute $\iint_{R^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y$. [Hint: polar coordinates].
b) Compute $\iint_{R^{2}} e^{-\left(2 x^{2}+6 x y+9 y^{2}\right)} d x d y$.
[See: http://www.math.upenn.edu/~kazdan/312S13/notes/MultInt1.pdf Change of Variable in a Multiple Integral.]

Bonus Problems

[Please give this directly to Professor Kazdan]
B-1 Let A be a positive definite $n \times n$ matrix, let E be the "ellipsoid" of points \vec{x} where $\langle\vec{x}, A \vec{x}\rangle=1$, and for a unit vector \vec{b} let \mathcal{P} be the set of points on the hyperplane $\langle\vec{x}, \vec{b}\rangle=c$. Find the two values of c so that the hyperplane \mathcal{P} is tangent to E (thus, the hyperplane intersects the ellipsoid in exactly one point).
[Hint: This is easy if $A=I$. Use Problem 10c to make an appropriate change of variables that reduces to this case.]
[Last revised: April 12, 2014]

