
Math 312, Spring 2014 Jerry L. Kazdan

Homework 3 Solutions

1. Let A , B , and C be n × n matrices with A and C invertible. Solve the equation
ABC = I −A for B .

Solution: B = A−1(I −A)C−1 . You can rewrite this in various ways – but I won’t.
However, one must be careful since the matrices A , B , and C are not assumed to
commute.

2. If a square matrix M has the property that M4 −M2 + 2M − I = 0, show that M is
invertible. [Suggestion: Find a matrix N so that MN = NM = I . This is very short.]

Solution The given equation implies that M(M3 − M + 2I) = I hence for N =
M3 −M + 2I we have MN = NM = I , hence M is invertible with inverse N .

3. Linear maps F (X) = AX , where A is a matrix, have the property that F (0) = A0 = 0,
so they necessarily leave the origin fixed. It is simple to extend this to include a
translation,

F (X) = V +AX,

where V is a vector. Note that F (0) = V .

Find the vector V and the matrix A that describe each of the following mappings [here
the light blue F is mapped to the dark red F ].

a). b).
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c). d).

Solution:

a). V =

(

4
2

)

, A = I b). V =

(

4
−2

)

, A =

(

1 0
0 2

)

c). V =

(

−1
2

)

, A =

(

−1 0
0 1

)

d). V =

(

1
2

)

, A =

(

1 1
0 1

)

.

4. Use Theorems from Section 3.3 (or from class) to explain the following carefully.

a) If V and W are subspaces with V contained inside W , why is dimV ≤ dimW ?

b) If dimV = dimW , explain why V = W .

Solution

a) Let dimV = m , dimW = n . Now, if B is a basis for V then B will also be a
subset of linearly independent vectors of W . Also, we know that for every linearly
independent subset of W the number of its elements can be at most equal to the
dimension of W , i.e. m ≤ n , from the definitions of the dimension and basis of a
vector space.

b) If dimV = dimW and B is a basis for V then B spans V . Since V is a subspace
of W , it means we can extend B to be a basis of W , but by adding any vector we
obtain a linear dependent set since dimW = dimV = #B , so we B must span W

as well. Hence V = span{B} = W .

5. Let A : R3 → R
2 and B : R2 → R

3 , so BA : R3 → R
3 and AB : R2 → R

2 .

a) Why must there be a non-zero vector ~x ∈ R such that A~x = 0.

b) Show that the 3× 3 matrix BA can not be invertible.

c) Give an example showing that the 2× 2 matrix AB might be invertible.

Solution

a) Since 3 = dimR
3 = dim(kerA)+ dim(imA) and dim(imA) ≤ 2, then dim(kerA) ≥

1.
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b) If ~x ∈ kerA then since B linear map we get that ~x ∈ kerBA so from (a) we obtain
that kerBA is not trivial, hence BA not invertible.

c) Let A =

(

1 0 0
0 1 0

)

and B =





1 0
0 1
0 0



 . Then AB as a linear map is the identity

hence it’s invertible while for BA easily we can verify that is not invertible.

6. Let A be a square matrix. If A2 is invertible, show that A is invertible. [Note: You
cannot use the formula (AB)−1 = B−1A−1 because it presumes you already know that
both A and B are invertible. For non-square matrices, it is possible for AB to be
invertible while neither A nor B are (see the last part of the previous problem).]

Solution [Method 1] Since A2 is invertible, there exists a square matrix B such
that A2B = I hence A(AB) = I . Similarly, (BA)A = I . Thus A is invertible with
inverse AB .

[Method 2] kerA2 = 0 so kerA = 0. Since A is a square matrix, then it is invertible.

[Method 3] For any y there is a solution x of A2x = y . Thus w := Ax is a solution
of Aw = y so A is onto. Since A is a square matrix then it is invertible.

7. [Bretscher, Sec. 2.4 #35] An n× n matrix A is called upper triangular if all the
elements below the main diagonal, a11 , a22 , . . . ann are zero, that is, if i > j then
aij = 0.

a) Let A be the upper triangular matrix

A =





a b c

0 d e

0 0 f



 .

For which values of a, b, c, d, e, f is A invertible?

Solution: As always, in thinking about the invertability I think of solving the
equations A~x = ~y . In this case, the equations are

ax1 + bx2 + cx3 =y1

+ dx2 + ex3 =y2

fx3 =y3

Clearly, to always be able to solve the last equation for x3 we need f 6= 0. This
gives us x3 , which we use in the second equation. It then can always be solved for
x2 if (and only if) d 6= 0. Inserting the values of x2 and x3 in the first equation,
it can always be solved for x1 if (and only if) a 6= 0.

Summary: An upper triangular matrix A is invertible if and only if none of its
diagonal elements are 0.
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b) If A is invertible, is its inverse also upper triangular?

Solution: In the above computation, notice that x3 only depends on y3 . Then
x2 only depends on y2 and y3 . Finally, x1 depends on y1 , y2 , and y3 . Thus the
inverse matrix is also upper triangular.

c) Show that the product of two n× n upper triangular matrices is also upper trian-
gular.

Solution: Try the 3× 3 case.

The general case is the same – but takes some thought to write-out clearly and
briefly. It is a consequence of three observations:

1. A matrix C :=







c11 · · · c1n
...

...
...

cn1 · · · cnn






is upper-triangular if all the elements below

the main diagonal are zero, that is, cjk = 0 for all j > k .

2. For any matrices, to compute the product AB , the jk element is the dot product
of the jth row of A with the kth column of B .

3. For upper-triangular matrices:

the jth row of A is (0, . . . 0, ajj , . . . , ajn) while the kth column of B is





















b1k
...

bkk
0
...
0





















.

For j > k , take the dot product of these vectors. The result is now obvious.

d) Show that an upper triangular n × n matrix is invertible if none of the elements
on the main diagonal are zero.

Solution: This is the same as part a). The equations A~x = ~y are

a11x1 + a12x2 + · · · + a1 n−1xn−1 + a1nxn = y1

a22x2 + · · · + a2 n−1xn−1 + a2nxn = y2

...
...

...

an−1n−1xn−1 + an−1nxn = yn−1

annxn = yn.

To begin, solve the last equation for xn . This can always be done if (and only if)
ann 6= 0. Then solve the second from the last for xn−1 , etc. This computation also
proves the converse (below).

As in part b), the inverse, if it exists, is also upper triangular.
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e) Conversely, if an upper triangular matrix is invertible show that none of the ele-
ments on the main diagonal can be zero.

Solution: This follows from the reasoning of the previous part. Say ajj = 0
but none of the diagonal elements for larger j are zero. Then as in the previous
part, we can solve for xn , then xn−1 , . . . , xj+1 in terms of yn , . . . ,yj+1 . But since
ajj = 0, the jth equation

0xj + a(j+1)(j+1)xj+1 + · · ·+ annxn = yj

can only be solved if yj satisfies the above condition, so A cannot be invertible.

Alternate Using determinants (which we have not yet covered), briefly we can
verify this since for an upper triangular matrix the determinant is equal to the
product of the elements on the main diagonal.

8. [See Bretscher, Sec. 3.2 #6] Let U and V both be two-dimensional subspaces of
R
5 , and let W = U ∩ V . Find all possible values for the dimension of W .

Solution: Let e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0),. . . , e5 = (0, 0, 0, 0, 1) be the
standard basis for R

5 and say U is spanned by e1 and e2 .

If V is also spanned by e1 and e2 the dimension of W is 2, clearly the largest possible.

If V is spanned by e1 and e3 the dimension of W is 1.

If V is spanned by e3 and e4 the dimension of W is 0. They intersect only at the
origin.

9. [See Bretscher, Sec. 3.2 #50] Let U and V both be two-dimensional subspaces
of R5 , and define the set W := U + V as the set of all vectors w = u+ v where u ∈ U

and v ∈ V can be any vectors.

a) Show that W is a linear space.

Solution: Since the sum of two vectors in U is in U and the sum of two vectors
in V is also in V , then the sum of two vectors in W is also in W

Similarly, if ~w = ~u+ ~v ∈ W , then so is c~w = c~u+ c~v for any scalar c .

b) Find all possible values for the dimension of W .

Solution: We use the notation of the previous problem.

If V is also spanned by e1 and e2 the dimension of W is 2, clearly the smallest
possible.

If V is spanned by e1 and e3 the dimension of W is 3.

If V is spanned by e3 and e4 the dimension of W is 4. This is the largest possible.

10. Say you have k linear algebraic equations in n variables; in matrix form we write
A~x = ~y . Give a proof or counterexample for each of the following.
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a) If n = k (same number of equations as unknowns), there is always at most one

solution.

Solution: False. A = ( 0 0
0 0 ) and A = ( 1 0

0 0 ) are both counterexamples. It is true
only if A is invertible.

b) If n > k (more unknowns than equations), you can always solve A~x = ~y .

Solution: False. Counterexamples: A = ( 0 0 0
0 0 0 ) and A = ( 1 2 3

2 4 6 ).

c) If n > k (more unknowns than equations), the nullspace of A has dimension greater
than zero.

Solution: True. For A~x = ~y , if there are more unknowns than equations, then
the homogeneous equation A~x = 0 always has a a solution other than the trivial
solution ~x = 0.

d) If n < k (more equations than unknowns), then for some ~y there is no solution of
A~x = ~y .

Solution: True. If A : Rn → R
k , then the dimension of the image of A is at

most n . Thus, if n < k then A cannot be onto.

e) If n < k (more equations than unknowns), the only solution of A~x = 0 is ~x = 0.

Solution: False. Counterexamples: A =
(

0 0
0 0
0 0

)

and A =
(

0 1
0 2
0 3

)

.

11. [Bretscher, Sec. 3.3 #30] Find a basis for the subspace of R
4 defined by the

equation 2x1 − x2 + 2x3 + 4x4 = 0.

Solution: Solve this for, say, x2 = 2x1 + 2x3 + 4x4 . Then a vector ~x is in the
subspace if (and only if) for any choice of x1 , x3 , and x4

~x =









x1
2x1 + 2x3 + 4x4

x3
x4









=









1
2
0
0









x1 +









0
2
1
0









x3 +









0
4
0
1









x4.

The three column vectors on the right are a basis for this subspace: dimension is 3.
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