Problem Set 4

Due: In class Thursday, Thurs. Feb. 13. Late papers will be accepted until 1:00 PM Friday.
Reminder: Exam 1 is on Tuesday, Feb. 18, 9:00-10:20. No books or calculators but you may always use one 3 " $\times 5$ " card with handwritten notes on both sides.

For the coming week, please review Chapter 4 Sections 4.1 and 4.2. We have already covered most of Chapter 4.
Later we will return in greater detail to the material in Section 3.4 on Coordinates.

1. Find a basis for the linear space of matrices $\left(\begin{array}{ll}1 & b \\ c & d\end{array}\right)$ with the property that $a+d=0$.

What is the dimension of this space.
2. Find a linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose kernel is exactly the plane

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right) \subset \mathbb{R}^{3} \mid x_{1}+2 x_{2}-x_{3}=0\right\}
$$

3. Like Bretscher, Sec. 4.2 \#66 Find the kernel of the map $T: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ defined by $T(u):=u^{\prime}-4 u$. What is the dimension of the kernel?
a) Repeat this for $T u:=u^{\prime \prime}-4 u$.
4. We want to approximately compute $\int_{0}^{2} \frac{1}{1+x^{2}} d x$ by partitioning the interval $0 \leq x \leq 2$ into four sub-intervals whose end point are $x_{0}=0, x_{1}=0.5, x_{2}=1, x_{3}=1.5, x_{4}=2$. of width $h=x_{i+1}-x_{i}=1 / 2$. In each sub-interval replace the integrand by a simpler function.
trapezoidal Rule: Approximate the function $f(x)$ in each sub-interval $\left[x_{i}, x_{i+1}\right]$ by a straigh line joining its end points: $\left(x_{1}, f\left(x_{i}\right)\right),\left(x_{i+1}, f\left(x_{i+1}\right)\right)$.
Simpson's Rule This works with two sub-intervals at a time, say $x_{0} \leq x \leq x_{1}$ and $x_{1} \leq x \leq x_{2}$ and uses a parabola,

$$
p(x):=a+b x+c x^{2}
$$

that passes through the three points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$. The idea is to approximate the area under the function in the interval $x_{0} \leq x \leq x_{2}$ by the area under the parabola.
5. Find a basis for the space \mathcal{P}_{4} of polynomials $p(x)$ degree at most 4 with the properties $p(1)=0$ and $p(3)=0$. What is the dimension of this space?
6. In class we considered the interpolation problem of finding a polynomial of degree n passing through $n+1$ specified distinct points in the plane. To be definite, take $n=3$, and say our points are $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$, and $\left(a_{4}, b_{4}\right)$. This problem involves \mathcal{P}_{3}, and so we could work in the usual basis $\left\{1, x, x^{2}, x^{3}\right\}$. However, it is easier to use the Lagrange basis. The point of this problem is to see vividly why choosing a basis adapted to the problem may involve much less work.
a) Setup the linear equations you would need to solve to find the polynomial of degree 3 passing through the points $(0,-3),(1,-1),(2,11)$, and $(-1,-7)$ if you use the usual basis $\left\{1, x, x^{2}, x^{3}\right\}$. But don't take time to solve these.
b) Solve the same problem explicitly using the Lagrange basis.
7. [[Bretscher, Sec. 4.2 \#70] Does there exist a polynomial $f(t)$ of degree at most 4 such that $f(2)=3, f(3)=5, f(5)=7, f(7)=11$, and $f(11)=2$? If so, how many such polynomials are there? [: NOTE: This problem only asks if such a polynomial exists. It is not asking you to find it.]
8. Let \mathcal{P}_{2} be the linear space of polynomials of degree at most 2 and $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be the transformation

$$
(T(p))(t)=\frac{1}{t} \int_{0}^{t} p(s) d s
$$

For instance, if $p(t)=2+3 t^{2}$, then $T(p)=2+t^{2}$.
a) Prove that T is a linear transformation.
b) Find the kernel of T, and find its dimension.
c) Find the range (=image) of T, and compute its dimension.
d) Verify the dimension of the kernel and the dimension of the range add up to what you would expect.
e) Using the standard basis $\left\{1, t, t^{2}\right\}$ for \mathcal{P}_{2}, represent the linear transformation T as a matrix A.
f) Using your matrix represention from (e), find $T(p)$ where $p(t)=t-2$.

The remaining problems are from the Lecture notes on Vectors
http://www.math.upenn.edu/~kazdan/312S13/notes/vectors/vectors10.pdf
9. [p. $8 \# 5$] The origin and the vectors X, Y, and $X+Y$ define a parallelogram whose diagonals have length $X+Y$ and $X-Y$. Prove the parallelogram law

$$
\|X+Y\|^{2}+\|X-Y\|^{2}=2\|X\|^{2}+2\|Y\|^{2}
$$

This states that in a parallelogram, the sum of the squares of the lengths of the diagonals equals the sum of the squares of the four sides.
10. [p. 8 \#6] (Math 240 Review)
a) Find the distance from the straight line $3 x-4 y=10$ to the origin. [It may help to observe that this line is parallel to the plane $3 x-4 y=0$, whose normal vector is clearly $\vec{N}=(3,-4)$.]
b) Find the distance from the plane $a x+b y+c z=d$ to the origin (assume the vector $\vec{N}=(a, b, c) \neq 0)$.
11. [p. 8 \#8]
a) If X and Y are real vectors, show that

$$
\langle X, Y\rangle=\frac{1}{4}\left(\|X+Y\|^{2}-\|X-Y\|^{2}\right) .
$$

This formula is the simplest way to recover properties of the inner product from the norm.
b) As an application, show that if a square matrix R has the property that it preserves length, so $\|R X\|=\|X\|$ for every vector X, then it preserves the inner product, that is, $\langle R X, R Y\rangle=\langle X, Y\rangle$ for all vectors X and Y.
12. [p. $9 \# 10$] (Also done in class)
a) If a certain matrix C satisfies $\langle X, C Y\rangle=0$ for all vectors X and Y, show that $C=0$.
b) If the matrices A and B satisfy $\langle X, A Y\rangle=\langle X, B Y\rangle$ for all vectors X and Y, show that $A=B$.
13. [p. $9 \# 11-12$] A matrix A is called anti-symmetric (or skew-symmetric) if $A^{*}=$ $-A$.
a) Give an example of a 3×3 anti-symmetric matrix (other than the trivial $A=0$).
b) If A is any anti-symmetric matrix, show that $\langle X, A X\rangle=0$ for all vectors X.
[Last revised: February 21, 2014]

