Problem Set 4 Solutions

Due: In class Thursday, Thurs. Feb. 13. Late papers will be accepted until 1:00 PM Friday.
Reminder: Exam 1 is on Tuesday, Feb. 18, 9:00-10:20. No books or calculators but you may always use one 3 " $\times 5$ " card with handwritten notes on both sides.

For the coming week, please review Chapter 4 Sections 4.1 and 4.2. Also read Sections 5.1 and 5.2 (we will skip the QR Factorization) and the notes
http://www.math.upenn.edu/~kazdan/312S13/notes/vectors/vectors10.pdf on Vectors and Least Squares and http://www.math.upenn.edu/~kazdan/312S13/notes/OrthogProj.pdf on Orthogonal Projections.
Later we will return in greater detail to the material in Sections 3.4 and 4.3.

1. Find a basis for the linear space of matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with the property that $a+d=0$. What is the dimension of this space?
Solution Such matrices are of the form $\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)$ hence any element of this linear space can be written as

$$
\left(\begin{array}{rr}
a & b \\
c & -a
\end{array}\right)=a\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Hence the three matrices appearing in this decomposion form a basis of this linear space and the dimension is 3 .
2. Find a linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose kernel is exactly the plane

$$
\begin{gathered}
\qquad\left\{\left(x_{1}, x_{2}, x_{3}\right) \subset \mathbb{R}^{3} \mid x_{1}+2 x_{2}-x_{3}=0\right\} . \\
\text { SoLUTION Let } L=\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

3. a) [Like Bretscher, Sec. $4.2 \# 66]$ Find the kernel of the map $T: C^{\infty}(\mathbb{R}) \rightarrow$ $C^{\infty}(\mathbb{R})$ defined by $T(u):=u^{\prime}-4 u$. What is the dimension of the kernel?
b) Repeat this for $T u:=u^{\prime \prime}-4 u$.

Solution
a) The kernel of T will be the set of solutions of $u^{\prime}=4 u$ which is $\left\{c e^{4 x} \mid c \in \mathbb{R}\right\}$. So it has dimension 1.
b) The kernel of T will be the set of solutions of $u^{\prime \prime}=4 u$ which is $\left\{a e^{2 x}+b e^{-2 x} \mid a . b \in\right.$ $\mathbb{R}\}$. So the kernel has dimension 2 .
4. We want to approximately compute $\int_{0}^{2} \frac{1}{1+x^{2}} d x$ by partitioning the interval $0 \leq x \leq 2$ into four sub-intervals whose end point are $x_{0}=0, x_{1}=0.5, x_{2}=1, x_{3}=1.5, x_{4}=2$. of width $h=x_{i+1}-x_{i}=1 / 2$. In each sub-interval replace the integrand by a simpler function.
trapezoidal Rule: Approximate the function $f(x)$ in each sub-interval $\left[x_{i}, x_{i+1}\right]$ by a straigh line joining its end points: $\left(x_{1}, f\left(x_{i}\right)\right),\left(x_{i+1}, f\left(x_{i+1}\right)\right)$.
Solution The values of the function $y_{i}=f\left(x_{i}\right)=\frac{1}{1+x_{i}^{2}}$ at the points x_{i} are

$$
\begin{equation*}
y_{0}=1, y_{1}=4 / 5=0.8, y_{2}=1 / 2=0.5, y_{3}=4 / 13=0.3077, y_{4}=1 / 5=0.2 \tag{1}
\end{equation*}
$$

Then the straight line between $\left(x_{i}, y_{i}\right),\left(x_{i+1}, y_{i+1}\right)$ is given by

$$
y=y_{i}+\frac{y_{i+1}-y_{i}}{h}\left(x-x_{i}\right) .
$$

After a simple calculation

$$
\int_{x_{i}}^{x_{i+1}}\left[y_{i}+\frac{y_{i+1}-y_{i}}{h}\left(x-x_{i}\right)\right] d x=\frac{h}{2}\left(y_{i}+y_{i+1}\right) .
$$

Hence the approximation is

$$
\int_{0}^{2} \frac{1}{1+x^{2}} d x \approx \sum_{i=0}^{4} \frac{h}{2}\left(y_{i}+y_{i+1}\right)=\frac{1}{4}\left(y_{0}+2 y_{1}+2 y_{2}+2 y_{3}+y_{4}\right)=1.10384
$$

Simpson's Rule: This works with two sub-intervals at a time, say $x_{0} \leq x \leq x_{1}$ and $x_{1} \leq x \leq x_{2}$ and uses a parabola,

$$
p(x):=a+b x+c x^{2}
$$

that passes through the three points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$. The idea is to approximate the area under the function in the interval $x_{0} \leq x \leq x_{2}$ by the area under the parabola.
Solution The computation is simpler if for the moment we let $x_{0}=-h, x_{1}=0$, and $x_{2}=h$. Then the conditions that $p(-h)=y_{0}, p(0)=y_{1}$ and $p(h)=y_{2}$ become

$$
\begin{equation*}
a-b h+c h^{2}=y_{0}, \quad a=y_{1}, \quad \text { and } \quad a+b h+c h^{2}=y_{2} . \tag{2}
\end{equation*}
$$

Instead of computing a, b, and c immediately, we first do the next step of the approximate integration using $f(x) \approx p(x)$ in the interval $-h \leq x \leq h$. Then

$$
\int_{-h}^{h} f(x) d x \approx \int_{-h}^{h}\left(a+b x+c x^{2}\right) d x=2 a h+\frac{2}{3} c h^{3}=\frac{h}{3}\left(6 a+2 c h^{2}\right) .
$$

But from equations (2), $a=y_{1}$ and $2 c h^{2}=y_{0}+y_{2}-2 y_{1}$. Thus

$$
\int_{-h}^{h} f(x) d x \approx \frac{h}{3}\left(6 y_{1}+y_{0}+y_{2}-2 y_{1}\right)=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right) .
$$

Note that this formula depends only on the spacing, h of the x_{j} and the values of the corresponding y_{j}. In particular, we get

$$
\int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)
$$

Similarly,

$$
\int_{x_{2}}^{x_{4}} f(x) d x \approx \frac{h}{3}\left(y_{2}+4 y_{3}+y_{4}\right) .
$$

Adding these we obtain

$$
\begin{equation*}
\int_{x_{0}}^{x_{4}} f(x) d x \approx \frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right) . \tag{3}
\end{equation*}
$$

This is Simpson's Rule. More generally, Simpson's Rule works with a pair of adjacent subintervals so there must be an even number of subintervals whose endpoints are $x_{0}, x_{1}, \ldots, x_{n}$. Then it gives

$$
\int_{x_{0}}^{x_{n}} f(x) d x \approx \frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) .
$$

We now apply Simpson's Rule (3) to our particular problem (the data (1) and find

$$
\int_{0}^{2} \frac{1}{1+x^{2}} d x \approx 1.10513
$$

5. Find a basis for the space \mathcal{P}_{4} of polynomials $p(x)$ degree at most 4 with the properties $p(1)=0$ and $p(3)=0$. What is the dimension of this space?
SOLUTION We write our polynomials as $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} 4 x^{3}+a_{4} x^{4}$. Then the conditions $p(1)=0$ and $p(3)=0$ are

$$
a_{0}+a_{1}+a_{2}+a_{3}+a_{4}=0, \quad \text { and } \quad a_{0}+3 a_{1}+9 a_{2}+27 a_{3}+81 a_{4}=0 .
$$

We use these to solve for a_{0} and a_{1} in terms of a_{2}, a_{3}, and a_{4} and then use these in $p(x)$ to obtain

$$
p(x)=\left(3-4 x+x^{2}\right) a_{2}+\left(12-13 x+x^{3}\right) a_{3}+\left(39-40 x+x^{4}\right) a_{4} .
$$

The three polynomials

$$
p_{1}(x)=3-4 x+x^{2}, \quad p_{2}(x)=12-13 x+x^{3}, \quad \text { and } \quad p_{3}(x)=39-40 x+x^{4}
$$

are a basis for this space so its dimension is 3 .
Alternate The above computation was unpleasant, and leads us to seek a different basis that is better adapted to this space. It uses the observation that each polynomial $p(x)$ in this space must have the quadratic polynomial $(x-1)(x-3)$ as a factor. Thus $p(x)$ must have the form

$$
p(x)=(x-1)(x-3)\left(\alpha+\beta x+\gamma x^{2}\right)
$$

for any numbers α, β, and γ. This alternate basis consists of the three polynomials
$q_{1}(x)=(x-1)(x-3), \quad q_{2}(x)=(x-1)(x-3) x, \quad$ and $\quad q_{3}(x)=(x-1)(x-3) x^{2}$.
6. In class we considered the interpolation problem of finding a polynomial of degree n passing through $n+1$ specified distinct points in the plane. To be definite, take $n=3$, and say our points are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$, and $\left(x_{4}, y_{4}\right)$. This problem involves \mathcal{P}_{3}, and so we could work in the usual basis $\left\{1, x, x^{2}, x^{3}\right\}$. However, it is easier to use the Lagrange basis. The point of this problem is to see vividly why choosing a basis adapted to the problem may involve much less work.
a) Setup the linear equations you would need to solve to find the polynomial of degree 3 passing through the points $(0,-3),(1,-1),(2,11)$, and $(-1,-7)$ if you use the usual basis $\left\{1, x, x^{2}, x^{3}\right\}$. But don't take time to solve these.
Solution Let $p(x)=a+b x+c x^{2}+d x^{3}$. Then we want:
$a=-3, \quad a+b+c+d=-1, \quad a+2 b+4 c+8 d=11, \quad a-b+c-d=-7$,
or equivalently,

$$
b+c+d=2, \quad 2 b+4 c+8 d=14, \quad-b+c-d=-4,
$$

so we have a 3×3 system to determine the remaining coeffients b, c, d. Not fun.
b) Solve the same problem explicitly using the Lagrange basis.

Solution The Lagrange basis consists of four polynomials $p_{i}(x), i=0, \ldots, 3$ with the property that

$$
p_{i}\left(x_{j}\right) \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

For instance,

$$
p_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)}=\frac{(x-1)(x-2)(x+1)}{(0-1)(0-2)(0+1)}
$$

Then

$$
\begin{aligned}
p(x) & =y_{0} p_{0}(x)+y_{1} p_{1}(x)+y_{2} p_{2}(x)+y_{3} p_{3}(x) \\
& =-3 p_{0}(x)-1 p_{1}(x)+11 p_{2}(x)-7 p_{3}(x)
\end{aligned}
$$

7. [[Bretscher, Sec. 4.2 \#70] Does there exist a polynomial $f(t)$ of degree at most 4 such that $f(2)=3, f(3)=5, f(5)=7, f(7)=11$, and $f(11)=2$? If so, how many such polynomials are there? [: Note: This problem only asks if such a polynomial exists. It is not asking you to find it.]

Solution Polynomial Interpolation suggests that there exists a polynomial $f(t)$ of degree at most 4 passing from 5 specified distinct points and using the Lagrange basis as in problem 6 part (b) we can define $f(t)$. Now suppose $f(t), g(t)$ are such polynomials. Then $r(t)=f(t)-g(t)$ is a polynomial of degree at most 4 which has 5 roots. That is a contradiction since a polynomial of degree n has at most n roots. Hence there is a unique such polynomial.

More formally, define the linear map $L: \mathcal{P}_{4} \rightarrow \mathbb{R}^{5}$ by the rule

$$
L f:=(f(2), f(3), f(5), f(7), f(11))
$$

The kernel of L are the quartic polynomial that is zero at the four points $x=$ $2,3,5,7,11$. But the only quartic polynomial that has four zeroes is the zero polynomial. Thus $\operatorname{ker}(L)=0$. Since \mathcal{P}_{4} and \mathbb{R}^{5} both have the same dimension, 5 , by the rank-nullity theorem L is invertible. Thus given any numbers $y_{0}, y_{1}, y_{2}, y_{3}$ and y_{4} there is a unique cubic polynomial $f(t)$ so that $f(2)=y_{0}, f(3)=y_{1}, f(5)=y_{2}$, $f(7)=y_{3}$, and $f(11)=y_{4}$.
8. Let \mathcal{P}_{2} be the linear space of polynomials of degree at most 2 and $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be the transformation

$$
(T(p))(t)=\frac{1}{t} \int_{0}^{t} p(s) d s
$$

For instance, if $p(t)=2+3 t^{2}$, then $T(p)=2+t^{2}$.
a) Prove that T is a linear transformation.

Solution Linearity of integral give us directly that T is a linear transformation. Actually if we let $p(s)=a+b s+c s^{2}$ then $(T(p))(t)=a+\frac{b}{2} t+\frac{c}{3} t^{2}$.
b) Find the kernel of T, and find its dimension.

Solution We want $p(s)=a+b s+c s^{2}$ such that $a+\frac{b}{2} t+\frac{c}{3} t^{2}=0$ for all t. Hence $p(s)=0$ and the kernel is trivial namely its dimension is 0 .
c) Find the range (=image) of T, and compute its dimension.

SOlUtion Then image contains elements $a+\frac{b}{2} t+\frac{c}{3} t^{2}=a+\hat{b} t+\hat{c} t^{2}$ for any $a, \hat{b}, \hat{c} \in \mathbb{R}$ hence $\operatorname{im} T=\mathcal{P}_{2}$, namely the dimension of the image is 3 .
d) Verify the dimension of the kernel and the dimension of the image add up to what you would expect.
Solution Indeed $\operatorname{dim}(\operatorname{im} T)+\operatorname{dim}(\operatorname{ker} T)=3=\operatorname{dim} \mathcal{P}_{2}$.
e) Using the standard basis $\left\{1, t, t^{2}\right\}$ for \mathcal{P}_{2}, represent the linear transformation T as a matrix A.
Solution The previous description of T give us that $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1 / 3\end{array}\right)$.
f) Using your matrix represention from (e), find $T(p)$ where $p(t)=t-2$.

$$
\text { Solution }\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1 / 3
\end{array}\right)\left(\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 / 2 \\
0
\end{array}\right) \text { hence } T(p)=-2+1 / 2 t
$$

The remaining problems are from the Lecture notes on Vectors
http://www.math.upenn.edu/~kazdan/312S13/notes/vectors/vectors10.pdf
9. [p. $8 \# 5]$ The origin and the vectors X, Y, and $X+Y$ define a parallelogram whose diagonals have length $X+Y$ and $X-Y$. Prove the parallelogram law

$$
\|X+Y\|^{2}+\|X-Y\|^{2}=2\|X\|^{2}+2\|Y\|^{2} ;
$$

This states that in a parallelogram, the sum of the squares of the lengths of the diagonals equals the sum of the squares of the four sides.

Solution: The standard procedure is to express the norm in terms of the inner product and use the usual algebraic rules for the inner product. Thus
$\|X+Y\|^{2}=\langle X+Y, X+Y\rangle=\langle X, X\rangle+\langle X, Y\rangle+\langle Y, X\rangle+\langle Y, Y\rangle=\langle X, X\rangle+2\langle X, Y\rangle+\langle Y, Y\rangle$,
with a similar formula for $\|X-Y\|^{2}$. After easy algebra, the result is clear.
10. [p. $8 \# 6$] (Math 240 Review)
a) Find the distance from the straight line $\mathcal{L}: 3 x-4 y=10$ to the origin. [It may help to observe that this line is parallel to the plane $3 x-4 y=0$, whose normal vector is clearly $\vec{N}=(3,-4)$.]
Solution: Note that the equation of the parallel line \mathcal{L}_{0} through the origin is $3 x-4 y=0$, which we rewrite as $\langle N, X\rangle=0$, where $N:=(3,-4)$ and $X=(x, y)$. Let X_{0} be some point on the original line (say $X_{0}=(2,-1)$ - although we won't need to be specific), so $\left\langle N, X_{0}\right\rangle=10$. Then the desired distance D is the same as the distance from X_{0} to the line $\mathcal{L}_{0}:\langle N, X\rangle=0$, through the origin. But the equation for \mathcal{L}_{0} says the vector N is perpendicular to the line \mathcal{L}_{0}. Thus the distance D is the length of the projection of X_{0} in the direction of N, that is,

$$
D=\frac{\left|\left\langle N, X_{0}\right\rangle\right|}{\|N\|}=\frac{10}{5}=2 .
$$

b) Find the distance from the plane $a x+b y+c z=d$ to the origin (assume the vector $\vec{N}=(a, b, c) \neq 0)$.
Solution: If X_{0} is some point on the plane, the equation of this plane is $\langle N, X\rangle=\left\langle N, X_{0}\right\rangle$. The solution presented in the above special case generalizes immediately to give

$$
D=\frac{\left|\left\langle N, X_{0}\right\rangle\right|}{\|N\|}=\frac{|d|}{\|N\|} .
$$

11. [p. $8 \# 8$]
a) If X and Y are real vectors, show that

$$
\begin{equation*}
\langle X, Y\rangle=\frac{1}{4}\left(\|X+Y\|^{2}-\|X-Y\|^{2}\right) . \tag{4}
\end{equation*}
$$

This formula is the simplest way to recover properties of the inner product from the norm.
Solution: The straightforward procedure is the same as in Problem 9: rewrite the norms on the right side of equation (4) in terms of the inner product and expand using algebra.
b) As an application, show that if a square matrix R has the property that it preserves length, so $\|R X\|=\|X\|$ for every vector X, then it preserves the inner product, that is, $\langle R X, R Y\rangle=\langle X, Y\rangle$ for all vectors X and Y.
Solution: We know that $\|R Z\|=\|Z\|$ for any vector Z. This implies $\| R(X+$ $Y)\|=\| X+Y \|$ for any vectors X and Y, and, similarly, $\|R(X-Y)\|=\|X-Y\|$ for any vectors X and Y. Consequently, by equation (4) (used twice)

$$
\begin{aligned}
4\langle R X, R Y\rangle & =\|R(X+Y)\|^{2}-\|R(X-Y)\|^{2} \\
& =\|X+Y\|^{2}-\|X-Y\|^{2} \\
& =4\langle X, Y\rangle
\end{aligned}
$$

for all vectors X and Y.
12. $[$ p. $9 \# 10]$ (Also done in class)
a) If a certain matrix C satisfies $\langle X, C Y\rangle=0$ for all vectors X and Y, show that $C=0$.
Solution: Since X can be any vector, let $X=C Y$ to show that $\|C Y\|^{2}=$ $\langle C Y, C Y\rangle=0$. Thus $C Y=0$ for all Y so $C=0$.
b) If the matrices A and B satisfy $\langle X, A Y\rangle=\langle X, B Y\rangle$ for all vectors X and Y, show that $A=B$.
Solution: We have

$$
0=\langle X, A Y\rangle-\langle X, B Y\rangle=\langle X,(A Y-B Y)\rangle=\langle X,(A-B) Y\rangle
$$

for all X and Y so by part (a) with $C:=A-B$, we conclude that $A=B$.
13. [p. $9 \# 11]$ A matrix A is called anti-symmetric (or skew-symmetric) if $A^{*}=-A$.
a) Give an example of a 3×3 anti-symmetric matrix (other than the trivial $A=0$). Solution: The most general anti-symmetric 3×3 matrix has the form

$$
\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right) .
$$

b) If A is any anti-symmetric matrix, show that $\langle X, A X\rangle=0$ for all vectors X. Solution: The key point is to use the definition of A^{*} hs having the property $\langle X, A Y\rangle=\left\langle A^{*} X, Y\right\rangle$ for all X and Y. This is equivalent to $\langle A X, Y\rangle=\left\langle X, A^{*} Y\right\rangle$ for all X and Y. [Using the fact that for a matrux A^{*} happens to be the transpose often causes extra confusion.] Thus

$$
\langle X, A X\rangle=\left\langle A^{*} X, X\right\rangle=-\langle A X, X\rangle=-\langle X, A X\rangle
$$

so $2\langle X, A X\rangle=0$ and we are done: $\langle X, A X\rangle=0$.
[Last revised: February 17, 2014]

