
Math 312, Spring 2014 Jerry L. Kazdan

Problem Set 5 Solutions
Due: In class Thursday, Thurs. Feb. 27. Late papers will be accepted until 1:00 PM Friday.

For the coming week, please read Chapter 5, Sections 5., 5.2, 5.3 [except for pages 221–223
on the QR Factorization], and Section 5.5.
We will not cover the material on QR factorization. It is an important numerical technique
– but our time is short. (We will cover Section 5.4 on the method of Least Squares soon.)

Please reread pages 1–7 in the Lecture notes on Vectors:
http://www.math.upenn.edu/~kazdan/312S13/notes/vectors/vectors10.pdf

and read:
http://www.math.upenn.edu//~kazdan/312S14/notes/orthogonal-example.pdf

on orthogonal projections.

In addition to the problems below, you should also know how to solve the following problems
from the text. Most are simple exercises. These are not to be handed in.

Sec. 5.1, #28, 29, 31
Sec. 5.2 #33

1. a) For which values of the constant a and b are the vectors U = (1 + a,−2b, 4) and
V = (2, 1,−1) perpendicular?

b) For which values of the constant a , and b is the above vector U , perpendicular to
both V and the vector W = (1, 1, 0)?

Solution

a) We want < U, V >= 0, i.e. 2 + 2a−2b−4 = 0, so for any a, b such that a− b = 1,
U, V are perpendicular.

b) We also need 0 =< U,W >= 1+a−2b . So we solve the system of the two equations
and obtain a = 3, b = 2.

2. [Like Bretscher, Sec. 5.1 #16] Consider the following orthonormal vectors in R4

~u1 =


1/2
1/2
1/2
1/2

 , ~u2 =


1/2
1/2
−1/2
−1/2

 , ~u3 =


1/2
−1/2

1/2
−1/2

 .

a) Let S be the span of ~u1 and ~u2 . Let ~x = (1, 2, 3, 4). Compute the orthogonal
projection, projS ~x , of ~x into S.

b) Verify that the vector ~w := ~x− projS~x is orthogonal to S .

c) Show that ‖~x‖2 = ‖projS~x‖2 + ‖~w‖2 .
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d) Compute the distance from ~x to the subspace S .

Solution

a) Since u1, u2 unit vectors we have that projS ~x =< x, ~u1 > ~u1+ < x, ~u2 > ~u2 =
5~u1 − 2~u2 = (3/2, 3/2, 7/2, 7/2).

b) ~w = (−1/2, 1/2,−1/2, 1/2) so < ~w, ~u1 >= 0 and < ~w, ~u2 >= 0 which proves what
we want.

c) ‖projS~x‖2 + ‖~w‖2 = 29 + 1 = 30 = ‖~x‖2 .

d) The distance from ~x to S is the norm of ~w which is equal to 1.

3. [Bretscher, Sec. 5.1 #16] Using the vectors from the previous problem, can you
find a vector u4 in R4 such that the vectors ~u1 , ~u2 , ~u3 , ~u4 are orthonormal? If so,
how many such vectors are there?

Solution Since R4 is four dimensional, you can extend these three orthonormal
vectors to an orthonormal basis. First find a vector orthogonal to these three; then
normalize it to be a unit vector. In this case,

Simplest: In the previous problem you already found a vector ~w , orthogonal to ~u1 ,
~u2 , and ~u3 . Use it. Moreover, it already happens to be a unit vector so let ~u4 = ~w to
obtain the desired orthonormal basis.

Alternate 1: In this particular example you might immediately guess the fourth
basis vector:

~u4 = ±


1/2
−1/2
−1/2

1/2

 , (1)

These two (note the ±) are the only possibility since the orthogonal complement of the
span of ~u1 , ~u2 , ~u3 is one dimensional so a basis will have only one vector. After we
have found one, which we call ~u4 , any other, say ~̂w must have the form ~w = c~u4 for
some constant c . Because we want a unit vector,

1 = ‖~w‖ = c2‖~u4‖ = c2,

so c = ±1.

Alternate 2: But what if this ~u4 didn’t immediately come to mind? Use the Gram-
Schmidt process. Pick any vector not in the span of ~u1 , ~u2 , ~u3 . Almost any vector in

R4 will do. I will try the simple ~w :=


1
0
0
0

 . We want to write ~w in the form

~w = a~u1 + b~u2 + c~u3 + ~z,
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where ~z is orthogonal to ~u1 , ~u2 , and ~u3 . Taking the inner product of both sides of
this successively with ~u1 , ~u2 , and ~u3 (which are unit vectors), we find that

a = 〈~w, ~u1〉 = 1/2, b = 〈~w, ~u2〉 = 1/2, c = 〈~w, ~u3〉 = 1/2.

Then

~z = ~w − [(1/2)~u1 + (1/2)~u2 + (1/2)~u3] =


1
0
0
0

− 1

2


3/2
1/2
1/2
−1/2

 =


1/4
−1/4
−1/4

1/4


To get the desired unit vector we let ~u4 = ~z/‖~z‖ which agrees with (1)

4. [Bretscher, Sec. 5.1 #21] Find scalars a , b , c , d , e , f , and g so that the following
vectors are orthonormal: ad

f

 ,

b1
g

 ,

 c
e

1/2

 .

Solution The orthogonality gives

ab+ d+ fg = 0, ac+ ed+ f/2 = 0, bc+ e+ g/2 = 0.

Because we want unit vectors, so we can’t scale the second or third vectors, we need
b = g = 0 and we can’t simply let c = e = 0 (it took me a few minutes to grasp this).
The orthogonality conditions are then

d = 0, ac+ f/2 = 0, e = 0.

That these are unit vectors gives a2 + f2 = 1 and c2 + 1/4 = 1. Therefore c = ±
√

3/2,
so f = ∓(

√
3)a , which in turn implies a = ±1/2.

5. Let V be an inner product space and S a subspace. Then we write S⊥ for the set of
all vectors in V that are orthogonal to S . It is called the orthogonal complement of S ,
and written S⊥ . Clearly is also a subspace of V .

a) In R3 , let S be the points (x1, x2, x3) that satisfy x1− 2x2 + x3 = 0. What is the
dimension of S⊥? [This should be a simple mental exercise.]

b) Let A : R3 → R5 . If the dimension of the kernel of A is 2, what is the dimension
of image(A)⊥?

.

Solution
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a) The plane S is a 2-dimensional linear subspace of R3 , hence S⊥ has dimension 1.

b) dim(image(A)⊥) = dimR5 − dim(image(A)) = dimR5 − (dimR3 − dim(ker(A)) =
5− 1 = 4.

6. [Bretscher, Sec. 5.1 #17] In R4 find a basis for W⊥ , where

W = span




1
2
3
4

 ,


5
6
7
8


 .

Solution The vectors ~x = (x1, x2, x3, x4) ∈W⊥ must satisfy

x1 + 2x2 + 3x3 + 4x4 =0

5x1 + 6x2 + 7x3 + 8x4 =0

Solving these equations for x1 and x2 in terms of x3 and x4 we find

x1 = x3 + 2x4 x2 = −2x3 − 3x4.

Thus

~x =


x3 + 2x4
−2x3 − 3x4

x3
x4

 =


1
−2

1
0

x3 +


2
−3

0
1

x4

The two vectors at the end of the previous line are a basis for W⊥ . (They are not an
orthogonal basis.)

7. Here we the linear space L2(−1, 1) with the usual inner product 〈f, g〉 :=
∫ 1
−1 f(x)g(x) dx

(assuming f(x) and g(x) are integrable). A function f(x) is called an even function if
f(−x) = f(x). An example is f(x) := 2−7x6 . Similarly, f(x) is odd if f(−x) = −f(x).
An example is f(x) = 2x − sin 3x . The function f(x) = 1 − 2x is neither even nor
odd.

a) If h(x) is any odd (integrable) function show that
∫ 1
−1 h(x) dx = 0.

b) Show that any even function f(x) and any odd function g(x) are orthogonal.

c) In this inner product, show that cos 3x and sin 8x are orthogonal.

d) Given any function f(x) show there is a unique even function feven(x) and an odd
function fodd(x) so that

f(x) = feven(x) + fodd(x). (2)

Find this decomposition for f(x) = ex .
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e) Continuing from the previous part, show that∫ 1

−1
f(x)2 dx =

∫ 1

−1
feven(x)2 dx+

∫ 1

−1
fodd(x)2 dx,

that is,
‖f‖2 = ‖feven‖2 + ‖fodd‖2

f) Compute

∫ 1

−1

[
3 + 5x7 + 2x cosx− 3x

1 + x4
+ xecos 2x

]
dx .

Solution

a) Note
∫ 0
−1 h(x) dx = −

∫ 0
1 h(−t) dt = −

∫ 1
0 h(x) dx = 0. The assertion is now clear.

b) Since f even, g odd we have fg odd hence < f, g >= 0 from part (a).

c) Since cos is an even function and sin is an odd function we obtain from part (b)
that they are orthogonal.

d) Assume there are such functions feven(x) and fodd(x). Then from equation (2),

f(−x) = feven(−x) + fodd(−x) = feven(x)− fodd(x).

Adding this equation to (2) gives feven = 1
2(f(x)+f(−x)), while subtracting them

gives fodd = 1
2(f(x)− f(−x)). These are the unique solutions of equation (2).

For ex , (ex)even = ex+e−x

2 = coshx , (ex)odd = ex−e−x

2 = sinhx .

e) This is immediate from part (d) since < feven, fodd >= 0.

f) Notice that the 5x7+2x cosx− 3x
1+x4 +xecos 2x is an odd function hence the integral

is equal to
∫ 1
−1 3 dx = 6.

8. [Bretscher, Sec. 5.5 #24]. Using the inner product 〈f, g〉 :=
∫ 1
0 f(x)g(x) dx , for

certain polynomials f , g , and h say we are given the following table of inner products:

〈 , 〉 f g h

f 4 0 8

g 0 1 3

h 8 3 50

For example, 〈g, h〉 = 〈h, g〉 = 3. Let E be the span of f and g .

a) Compute 〈f , g + h〉 .
Solution: 〈f , g + h〉 = 0 + 8 = 8.

b) Compute ‖g + h‖ .
Solution: ‖g + h‖2 = 1 + 2 · 3 + 50 = 57 so ‖g + h‖ =

√
57
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c) Find projEh . [Express your solution as linear combinations of f and g .]

Solution: Since f and g are orthogonal, they are an orthogonal basis for E .
Thus projEh = af + bg for some constants a and b , that is,

h = af + bg + w, (3)

for some w ⊥ E . To find a and b , as usual we take the inner product of both sides
with f and g and get

a =
〈h, f〉
‖f‖2

=
8

4
= 2, b =

〈h, g〉
‖g‖2

=
3

1
= 3.

Therefore,
projEh = 2f + 3g

d) Find an orthonormal basis of the span of f , g , and h [Express your results as
linear combinations of f , g , and h .]

Solution: Since f and g are orthogonal and, from equation (3), w is orthogonal
to both f and g , we find that f , g , and w are an orthogonal bases. To get an
orthonormal basis we need only normalize these. From (3),

‖h‖2 = ‖2f‖2 + ‖3g‖2 + ‖w‖2

so ‖w‖2 = 50− 4 · 4− 9 · 1 = 25. Therefore an orthonormal basis is

e1 := 1
2 f , e2 := g, e3 := 1

5w = 1
5(h− 2f − 3g).

9. Let V be the linear space of 4× 4 matrices with real entries. Define a linear transfor-
mation L : V → V by the rule L(A) = 1

2(A+ AT ). [Here AT is the matrix transpose
of A .]

a) Verify that L is linear.

Solution: Linearity is a consequence of (A+B)T = AT +BT and (cA)T = c(AT ).

b) Describe the image of L and find it’s dimension. [Try the case of 2 × 2 matrices
first.]

Solution: In the 2× 2 case, say A =

(
a b
c d

)
,then 1

2(A+ AT ) =

(
a b+c

2
b+c
2 d

)
.

So imL =

{(
a β
β d

)
| a, β, d ∈ R

}
and it’s 3 dimensional. The key observation is

that A+AT is a symmetric matrix.

In the 4× 4 case 1
2(A+AT )is the most general 4× 4 symmetric matrix:

1
2(A+AT ) =


a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

 .

The dimension of this space is 4 + 3 + 2 + 1 = 10.
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c) Verify that the rank and nullity add up to what you would expect. [Note: This
map L is called the symmetrization operator .]

Solution: For 2×2 matrices, kerL = {
(
a b+c

2
b+c
2 d

)
=

(
0 0
0 0

)
} = {

(
0 γ
−γ 0

)
| γ ∈

R} which is 1 dimensional.

For 4× 4 matrices, the kernel is any 4× 4 anti-symmetric matrix:
0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

 .

The dimension of these is 3 + 2 + 1 = 6. Note 10 + 6 = 16, which agrees with the
dimension of all 4× 4 matrices.

d) Given any 4× 4 matrix A , find a symmetric matrix As and an anti-symmetric Aa

so that A = As +Aa . [You should find simple formulas for As and Aa in terms of
A and A∗ .]
Solution: [This is almost identical to Problem 7d) above.] The sought formula

A = As +Aa implies A∗ = As −Aa.

Adding and subtracting these gives

As = 1
2(A+AT ) and Aa = 1

2(A−AT ).

This works for any n× n matrix.

10. a) For ~x ∈ R2 , let Q(~x) = 3x21 + 2x1x2 − 5x22 . Find a symmetric matrix A so that
Q(~x) = 〈~x, A~x〉 . Can you find some different symmetric matrix A? Why or why
not?

Solution: A =

(
3 1
1 −5

)
. This is the only symmetric matrix. To see this,

use Problem 9d) above to decompose any matrix A as A = As + Aa and note
(Homework Set 4 # 13) that for any anti-symmetric Aa we have 〈~x, Aa~x〉 = 0.
Thus for any matrix A we have 〈~x, A~x〉 = 〈~x, As~x〉 .

b) For ~x ∈ R3 , let Q(~x) = 3x21 + 2x1x2 − 5x22 − 4x1x3 + 2x23 . Find a symmetric 3× 3
matrix A so that Q(~x) = 〈~x, A~x〉 .
Could you have found some different symmetric matrix A?

Solution: A =

 3 1 −2
1 −5 0
−2 0 2

 . This symmetric A is unique, just as in part a).
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11. Let A =


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 . If 〈~x, A~x〉 > 0 for all ~x = (x1, x2, x3, x4) ∈ R4 , ~x 6= 0,

show that a, b, c, d must all be positive.

Solution: Making the calculations we obtain ax21 + bx22 + cx23 + dx24 > 0 for ~x =
(x1, x2, x3, x4) ∈ R4 . Letting ~x = ~ei , i = 1, 2, 3, 4 where e1 = (1, 0, 0, 0), e2 =
(0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1) we obtain what we want.

12. The following problem concerns the correlation coefficient (p. 213 in Bretscher).

a) Say you have a table of data. The first column, the vector V = (v1, . . . , vn), is
the number of hours each student studied for an exam, the second column, W =
(w1, . . . , wn), is the list of corresponding grades on the exam (A = 4, 0, B = 3.0,
etc.). To compute with data effectively, we should normalize by subtracting the
averages (mean) v̄ = (v1 + · · · + vn)/n and w̄ = (w1 + · · · + wn)/n) to get the
normalized data vectors

Vnorm := (v1 − v̄, . . . , vn − v̄), Wnorm := (w1 − w̄, . . . , wn − w̄)

(we could further normalize to make both of these to be unit vectors, but the
definition of the recurssion coefficient does this for us).

What would you roughly anticipate the correlation coefficient of the normalized
data will tell us? Why?

Solution: It will tell us what is the relationship between how many hours
a student studies and what grade he achieved. If r is positive this means that
studying many hours has a positive impact on the grade and as near r is to the
value 1, this means greater impact. If r is negatice this means that studying many
hours has a negative impact on the grade and as near r is to the value −1, this
means greater (negative) impact.

The value of r indicate how many of the corresponding variables of the normal-
ized data have the same or different sign and from this we can obtain conclusions
regarding the behavior of the one data vector in comparison with the other data
vector.

b) This time there is a trial of the effectiveness of a new medication. There are n
people, all of whom have a certain disease. Some are given the new drug, some a
placebo. The corresponding data vector V = (v1, . . . , vn) with a component being
either 1 (patient given the test drug), or 0 (given a placebo).

After several months the medication is evaluated resulting in a data vector W =
(w1, . . . , wn) where −1 ≤ wj ≤ 1 is determined using the following guidelines

wj =


+1 if the jth patient has been cured,

0 if the jth patient is essentially unchanged,

−1 if the jth patient has died.

.
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After normalizing the data vectors, you compute the correlation coefficient r .
If r = +0.8, what would you conclude?
If r = −0.2, what would you conclude?
If r = −0.7, what would you conclude?

Solution: If r = 0.8 this means that it is near the value 1 which means that out
of those that took the test drug most of them were cured. If r = −0.2 this means
that out of those that took the test drug most of them were unchanged or died. If
r = −0.7 then this means that out of those that took the test drug most of them
died.
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Bonus Problems
[Please give this directly to Professor Kazdan]

B-1 Let P1 , P2 , . . . , Pk be points in Rn . For X ∈ Rn let

Q(X) := ‖X − P1‖2 + ‖X − P2‖2 + · · · ‖X − Pk‖2.

Determine the point X that minimizes Q(X).

B-2 Consider the space C2
0 [0, 1] of twice continuously differentiable functions u(x) with

u(0) = 0 and u(1) = 0. Define the differential operator Mu by the formula M : u =
((1 + x2)u′)′ . Find the adjoint M∗ (you should find that M is self-adjoint).

[See http://www.math.upenn.edu/~kazdan/312S13/notes/Lu=-DDu.pdf]

[Last revised: March 9, 2014]
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