Math 312, Spring 2014 Jerry L. Kazdan

Problem Set 6
DuE: In class Thurs, March 6. Late papers will be accepted until 1:00 PM Friday.

For the coming week, please read Sections 5.3-5.4 and the notes
http://www.math.upenn.edu/~kazdan/312513/notes/vectors/vectors10.pdf
on Vectors and Least Squares.
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1. [BRETSCHER, SEC. 5.1 #26] Find the orthogonal projection Pg of & := [ 49 | into
49
2 3
the subspace S of R3 spanned by @ := | 3| and @ :== | —6
6 2
11
2. [BRETSCHER, SEC. 5.4 #2] Let A= |1 2|. Find a basis for kerA*.
1 3
Draw a sketch illustrating the formula (im A)+ = kerA* in this case.

3. [BRETSCHER, SEC. 5.4 #16] Let A be an n x k matrix. Show that

rank A = rank A*.
4. [BRETSCHER, SEC. 5.2 #32] Find an orthonormal basis for the plane 1 +x3+z3 = 0.

5. [BRETSCHER, SEC. 5.3 #10] Consider the space Pe of real polynomials of degree at
most 2 with the inner product

(f, 9)= ;/_lf(t)g(t) dt.

Find an orthonormal basis for all the functions in P that are orthogonal to f(t) =t¢.

6. [BRETSCHER, SEC. 5.3 #16] Consider the space P; with the inner product

1
(f.g) = /O FB)gt) dt.

a) Find an orthonormal basis for this space. [Suggestion: Let e;(t = 1 and pick
e2(t) = a + bt to be orthogonal to e .]


http://www.math.upenn.edu/~kazdan/312S13/notes/vectors/vectors10.pdf
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b) Find the linear polynomial ¢(t) = a + bt that best approximates the polynomial
f(t) = t?. Thus, one wants to pick g(t) so that ||f — g|| is as small as possible.
[Question: In an inner product space V', if you have a subspace S C V and a
vector ¥ € V', how can you find the vector in S that is closest to §7]

0 if 7<z<—7/2 -

Let f(xz):=<1 if —7/2 <z < 7/2 and define (f, g) = f(z)g(z)dx. Find the
0 ifr/2<zx<m o

Fourier Series of f(z).

[BRETSCHER, SEC. 5.1 #37] Consider a plane V in R3 with orthonormal basis i
and @. Let @ be a vector in R?. Find a formula for the reflection R¥ of # across the
plane V. Your answer will involve Py Z, the orthogonal projection of Z into the plane
V. [Suggestion: Use that (I — Py )Z is the component of Z that is orthogonal to V.
In a reflection, this is the part of Z that is flipped.]

Let V' be a linear space with an inner product and P : V — V a linear map. P is

called a projection if P2 =P. Let Q :=1— P.

a) Show that Q? = @, so @ is also a projection. Show that the image of P is the
kernel of Q.

b) A projection P is called an orthogonal projection if the image of P is orthogonal
to the kernel of P. If P = P*, show that P is an orthogonal projection.

c) Conversely, if P is an orthogonal projection, show that P = P*.

Let A be a real matrix, not necessarily square.
a) If A is onto, show that A* is one-to-one.

b) If A is one-to-one, show that A* is onto.

Let A be a real matrix, not necessarily square.
a) Show that both A*A and AA* are self-adjoint.

b) Show that kerA = kerA*A. [HINT: Show separately that kerA C kerA*A and
kerA D kerA*A. The identity (¥, A*AZ) = (AZ, AZ) is useful.]

c) If A is one-to-one, show that A*A is invertible

d) If A is onto, show that AA* is invertible.

Let A:R™ — R* be a linear map that is onto but not one-to-one. Say X; is a solution
of AX =Y. Is there a “best” possible solution? What can one say? Think about this
before reading the next paragraph.



Show that there is exactly one solution X5 of the form X, = A*V for some V', so
AA*V =Y. Moreover of all the solutions X of AX =Y, show that X is closest to
the origin.

Quadratic Polynomials Using Inner Products

If A is a real symmetric matrix (so it is self-adjoint), then Q(%) := (¥, AZ) is a quadratic
polynomial. Given a quadratic polynomial, it is easy to find the (unique) symmetric sym-
mentic matrix A. Here is an example. Say Q(Z) := 322 — 8z129 — 523 To find A, note that
—8x1x90 = —4x179 — 4x272 SO We can rewite () as

Q(X) = 3;13% —4dx1z9 — 4021 — 51‘%.

If we let

A= <_i :§> [Note A is a symmetric matrix],

then it is easy to verify that Q(Z) = (&, AZ). In the remaining problems we will use this
to help work with quadratic polynomials.

13. In each of these find a 3 x 3 symmetric matrix A so that Q(¥) = (Z, AZ).
a) Q(F) := 323 — 8xywo — 53 + 23.
b) Q(T) := 32? — 8x129 — 513 — wox3 + 73.

¢) Q(T) = 32? — 8129 — 53 — 7973,

14. [LOWER ORDER TERMS AND COMPLETING THE SQUARE| Which is simpler:
2 =% +4a3 — 22, + 4 =y: 27
= 1 2 1 x2+2 or Z—y1+4y2

If we let y3 = x1 — 1 and ya = x2 + 1/2, they are essentially the same. All we did was
translate the origin to (1, —1/2).

The point of this problem is to generalize this to quadratic polynomials in several
variables. Let

Q(f) = Z Qi LT + 2 Z bix; +c¢
= (&, AZ) +2(b, ) + ¢
be a real quadratic polynomial so & = (x1,...,2,), b= (b1,...,by) are real vectors
and A = (a;;) is a real symmetric n X n matrix.
In the case n = 1, Q(z) = ax? + 2bx + ¢ which is clearly simpler in the special case

b= 0. In this case, if a # 0, by completing the square we find

Q(z) = a(z+b/a)’ +c—2*/a = ay® + 7,



where we let y = x — b/a and v = ¢ — b?/a. Thus, by translating the origin: = =
y+b/a we can eliminate the linear term in the quadatratic polynomial — so it becomes
simpler.

a) Similarly, for any dimension n, if A is invertible, using the above as a model, show
there is a change of variables § == Z — ¢/ (this is a translation by the vector ¥') so
that in the new ¢ variables ) hasthe form

QW) = Q@ +7) = (7, Aj) +~ thatis, Q@)= ayyw;+7,
where v involves A, b, and ¢ — but no terms that are linear in . [In the case

n = 1, which you should try first, this means using a change of variables y = x —v
to change the polynomial ax? + 2bx + ¢ to the simpler ay? + v.]

b) As an example, apply this to Q(%) = 2% + 2x179 + 322 — 4.

15. For & € R" let Q(¥) := (¥, AZ), where A is a real symmetric matrix. We say that A
is positive definite if Q(&) > 0 for all & # 0, negative definite if Q(Z) < 0 for all £ # 0,
and indefinite if Q(Z) > 0 for some ¥ but Q(Z) < 0 for some otherZ.

a) In the special case n = 2 give (simple!) examples of matrices A that are positive
definite, negative definite, and indefinite.

b) In the special case where A is an invertible diagonal matrix,

)\1 0 ()

0 No - 0
I 0|’

0 0 - A\

under what conditions is Q(Z) positive definite, negative definite, and indefinite?
[REMARK: We will see that the general case can always be reduced to this special
case where A is diagonal.]

Bonus Problems
[Please give this directly to Professor Kazdan)]

B-1 Let S := {u(z) € C?[0, 7] with u(0) = u(r) = 0} and let Lu := —u”(z). Use the
inner product (u, v) = [ u(x)v(z)dz.
a) If uw and v arein S, show that (Lu, v) = (u, Lv). This shows that L is self-adjoint
on this space of functions. [HINT: Integrate by parts.]

b) If u(xz) € S, u # 0, is an eigenfunction of L, so Lu = Au for some constant A,
show that A > 0. [HINT: Compute (Lu, u) and integrate by parts.]

c) Find the eigenvalues \; and eigenfunctions uyg(z) of L (remember to use the
boundary conditions u(0) = u(w) = 0).
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