Problem Set 6

Due: In class Thurs, March 6. Late papers will be accepted until 1:00 PM Friday.

For the coming week, please read Sections 5.3-5.4 and the notes http://www.math.upenn.edu/~kazdan/312S13/notes/vectors/vectors10.pdf on Vectors and Least Squares.

1. [Bretscher, Sec. 5.1 \#26] Find the orthogonal projection P_{S} of $\vec{x}:=\left(\begin{array}{l}49 \\ 49 \\ 49\end{array}\right)$ into the subspace S of \mathbb{R}^{3} spanned by $\vec{v}_{1}:=\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right)$ and $\vec{v}_{2}:=\left(\begin{array}{r}3 \\ -6 \\ 2\end{array}\right)$.
2. [Bretscher, Sec. $5.4 \# 2]$ Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right)$. Find a basis for $\operatorname{ker} A^{*}$.

Draw a sketch illustrating the formula $(\operatorname{im} A)^{\perp}=\operatorname{ker} A^{*}$ in this case.
3. [Bretscher, Sec. 5.4\#16] Let A be an $n \times k$ matrix. Show that

$$
\operatorname{rank} A=\operatorname{rank} A^{*}
$$

4. [Bretscher, Sec. 5.2 \#32] Find an orthonormal basis for the plane $x_{1}+x_{2}+x_{3}=0$.
5. [Bretscher, Sec. 5.3 \#10] Consider the space \mathcal{P}_{\in} of real polynomials of degree at most 2 with the inner product

$$
\langle f, g\rangle=\frac{1}{2} \int_{-1}^{1} f(t) g(t) d t
$$

Find an orthonormal basis for all the functions in \mathcal{P}_{2} that are orthogonal to $f(t)=t$.
6. [Bretscher, Sec. 5.3 \#16] Consider the space \mathcal{P}_{1} with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

a) Find an orthonormal basis for this space. [Suggestion: Let $e_{1}(t=1$ and pick $e_{2}(t)=a+b t$ to be orthogonal to e_{1}.]
b) Find the linear polynomial $g(t)=a+b t$ that best approximates the polynomial $f(t)=t^{2}$. Thus, one wants to pick $g(t)$ so that $\|f-g\|$ is as small as possible. [Question: In an inner product space V, if you have a subspace $S \subset V$ and a vector $\vec{y} \in V$, how can you find the vector in S that is closest to \vec{y} ?]
7. Let $f(x):=\left\{\begin{array}{ll}0 & \text { if }-\pi \leq x \leq-\pi / 2 \\ 1 & \text { if }-\pi / 2<x<\pi / 2 \\ 0 & \text { if } \pi / 2 \leq x \leq \pi\end{array}\right.$ and define $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$. Find the Fourier Series of $f(x)$.
8. [Bretscher, Sec. $5.1 \# 37$] Consider a plane V in \mathbb{R}^{3} with orthonormal basis \vec{u}_{1} and \vec{u}_{2}. Let \vec{x} be a vector in \mathbb{R}^{3}. Find a formula for the reflection $R \vec{x}$ of \vec{x} across the plane V. Your answer will involve $P_{V} \vec{x}$, the orthogonal projection of \vec{x} into the plane V. [Suggestion: Use that $\left(I-P_{V}\right) \vec{x}$ is the component of \vec{x} that is orthogonal to V. In a reflection, this is the part of \vec{x} that is flipped.]
9. Let V be a linear space with an inner product and $P: V \rightarrow V$ a linear map. P is called a projection if $P^{2}=P$. Let $Q:=I-P$.
a) Show that $Q^{2}=Q$, so Q is also a projection. Show that the image of P is the kernel of Q.
b) A projection P is called an orthogonal projection if the image of P is orthogonal to the kernel of P. If $P=P^{*}$, show that P is an orthogonal projection.
c) Conversely, if P is an orthogonal projection, show that $P=P^{*}$.
10. Let A be a real matrix, not necessarily square.
a) If A is onto, show that A^{*} is one-to-one.
b) If A is one-to-one, show that A^{*} is onto.
11. Let A be a real matrix, not necessarily square.
a) Show that both $A^{*} A$ and $A A^{*}$ are self-adjoint.
b) Show that $\operatorname{ker} A=\operatorname{ker} A^{*} A$. [Hint: Show separately that $\operatorname{ker} A \subset \operatorname{ker} A^{*} A$ and $\operatorname{ker} A \supset \operatorname{ker} A^{*} A$. The identity $\left\langle\vec{x}, A^{*} A \vec{x}\right\rangle=\langle A \vec{x}, A \vec{x}\rangle$ is useful.]
c) If A is one-to-one, show that $A^{*} A$ is invertible
d) If A is onto, show that $A A^{*}$ is invertible.
12. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a linear map that is onto but not one-to-one. Say X_{1} is a solution of $A X=Y$. Is there a "best" possible solution? What can one say? Think about this before reading the next paragraph.

Show that there is exactly one solution X_{2} of the form $X_{2}=A^{*} V$ for some V, so $A A^{*} V=Y$. Moreover of all the solutions X of $A X=Y$, show that X_{2} is closest to the origin.

Quadratic Polynomials Using Inner Products

If A is a real symmetric matrix (so it is self-adjoint), then $Q(\vec{x}):=\langle\vec{x}, A \vec{x}\rangle$ is a quadratic polynomial. Given a quadratic polynomial, it is easy to find the (unique) symmetric symmentic matrix A. Here is an example. Say $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$ To find A, note that $-8 x_{1} x_{2}=-4 x_{1} x_{2}-4 x_{2} x_{2}$ so we can rewite Q as

$$
Q(\vec{x}):=3 x_{1}^{2}-4 x_{1} x_{2}-4 x_{2} x_{1}-5 x_{2}^{2} .
$$

If we let

$$
A:=\left(\begin{array}{rr}
3 & -4 \\
-4 & -5
\end{array}\right) \quad[\text { Note } A \text { is a symmetric matrix }]
$$

then it is easy to verify that $Q(\vec{x})=\langle\vec{x}, A \vec{x}\rangle$. In the remaining problems we will use this to help work with quadratic polynomials.
13. In each of these find a 3×3 symmetric matrix A so that $Q(\vec{x})=\langle\vec{x}, A \vec{x}\rangle$.
a) $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}+x_{3}^{2}$.
b) $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}-x_{2} x_{3}+x_{3}^{2}$.
c) $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}-x_{2} x_{3}$.
14. [Lower order terms and Completing the Square] Which is simpler:

$$
z=x_{1}^{2}+4 x_{2}^{2}-2 x_{1}+4 x_{2}+2 \quad \text { or } \quad z=y_{1}^{2}+4 y_{2}^{2} ?
$$

If we let $y_{1}=x_{1}-1$ and $y_{2}=x_{2}+1 / 2$, they are essentially the same. All we did was translate the origin to $(1,-1 / 2)$.
The point of this problem is to generalize this to quadratic polynomials in several variables. Let

$$
\begin{aligned}
Q(\vec{x}) & =\sum a_{i j} x_{i} x_{j}+2 \sum b_{i} x_{i}+c \\
& =\langle\vec{x}, A \vec{x}\rangle+2\langle b, \vec{x}\rangle+c
\end{aligned}
$$

be a real quadratic polynomial so $\vec{x}=\left(x_{1}, \ldots, x_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right)$ are real vectors and $A=\left(a_{i j}\right)$ is a real symmetric $n \times n$ matrix.
In the case $n=1, Q(x)=a x^{2}+2 b x+c$ which is clearly simpler in the special case $b=0$. In this case, if $a \neq 0$, by completing the square we find

$$
Q(x)=a(x+b / a)^{2}+c-2 b^{2} / a=a y^{2}+\gamma,
$$

where we let $y=x-b / a$ and $\gamma=c-b^{2} / a$. Thus, by translating the origin: $x=$ $y+b / a$ we can eliminate the linear term in the quadatratic polynomial - so it becomes simpler.
a) Similarly, for any dimension n, if A is invertible, using the above as a model, show there is a change of variables $\vec{y}==\vec{x}-\vec{v}$ (this is a translation by the vector \vec{v}) so that in the new \vec{y} variables Q hasthe form

$$
\hat{Q}(\vec{y}):=Q(\vec{y}+\vec{v})=\langle\vec{y}, A \vec{y}\rangle+\gamma \quad \text { that is, } \quad \hat{Q}(\vec{y})=\sum a_{i j} y_{i} y_{j}+\gamma,
$$

where γ involves A, b, and c - but no terms that are linear in \vec{y}. [In the case $n=1$, which you should try first, this means using a change of variables $y=x-v$ to change the polynomial $a x^{2}+2 b x+c$ to the simpler $a y^{2}+\gamma$.]
b) As an example, apply this to $Q(\vec{x})=2 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}-4$.
15. For $\vec{x} \in \mathbb{R}^{n}$ let $Q(\vec{x}):=\langle\vec{x}, A \vec{x}\rangle$, where A is a real symmetric matrix. We say that A is positive definite if $Q(\vec{x})>0$ for all $\vec{x} \neq 0$, negative definite if $Q(\vec{x})<0$ for all $\vec{x} \neq 0$, and indefinite if $Q(\vec{x})>0$ for some \vec{x} but $Q(\vec{x})<0$ for some other \vec{x}.
a) In the special case $n=2$ give (simple!) examples of matrices A that are positive definite, negative definite, and indefinite.
b) In the special case where A is an invertible diagonal matrix,

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right),
$$

under what conditions is $Q(\vec{x})$ positive definite, negative definite, and indefinite? [REmark: We will see that the general case can always be reduced to this special case where A is diagonal.]

Bonus Problems

[Please give this directly to Professor Kazdan]
B-1 Let $\mathcal{S}:=\left\{u(x) \in C^{2}[0, \pi]\right.$ with $\left.u(0)=u(\pi)=0\right\}$ and let $L u:=-u^{\prime \prime}(x)$. Use the inner product $\langle u, v\rangle=\int_{0}^{\pi} u(x) v(x) d x$.
a) If u and v are in \mathcal{S}, show that $\langle L u, v\rangle=\langle u, L v\rangle$. This shows that L is self-adjoint on this space of functions. [Hint: Integrate by parts.]
b) If $u(x) \in \mathcal{S}, u \not \equiv 0$, is an eigenfunction of L, so $L u=\lambda u$ for some constant λ, show that $\lambda>0$. [Hint: Compute $\langle L u, u\rangle$ and integrate by parts.]
c) Find the eigenvalues λ_{k} and eigenfunctions $u_{k}(x)$ of L (remember to use the boundary conditions $u(0)=u(\pi)=0)$.
[Last revised: February 28, 2014]

