Problem Set 6

DuE: In class Thurs, March 6. Late papers will be accepted until 1:00 PM Friday.

1. [Bretscher, Sec. 5.1 \#26] Find the orthogonal projection P_{S} of $\vec{x}:=\left(\begin{array}{l}49 \\ 49 \\ 49\end{array}\right)$ into the subspace S of \mathbb{R}^{3} spanned by $\vec{v}_{1}:=\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right)$ and $\vec{v}_{2}:=\left(\begin{array}{r}3 \\ -6 \\ 2\end{array}\right)$.
Solution: We are fortunate that the vectors \vec{v}_{1} and \vec{v}_{2} are orthogonal. We want to find constants a and b so that

$$
\begin{equation*}
\vec{x}=a \vec{v}_{1}+b \vec{v}_{2}+\vec{w}, \tag{1}
\end{equation*}
$$

where \vec{w} is orthogonal to S. Then the desired projection will be $P_{S} \vec{x}=a \vec{v}_{1}+b \vec{v}_{2}$. To find the scalars a and n, take the inner product of (1) with \vec{v}_{1} and then \vec{v}_{2} we find

$$
\left\langle\vec{x}, \vec{v}_{1}\right\rangle=a\left\|\vec{v}_{1}\right\|^{2} \quad \text { and } \quad\left\langle\vec{x}, \vec{v}_{2}\right\rangle=b\left\|\vec{v}_{2}\right\|^{2}
$$

Using the particular vectors in this problem, $a=11$ and $b=-1$. Thus

$$
P_{S} \vec{x}=11 \vec{v}_{1}-\vec{v}_{2}=\left(\begin{array}{l}
19 \\
39 \\
64
\end{array}\right)
$$

2. [Bretscher, Sec. $5.4 \# 2]$ Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right)$. Find a basis for $\operatorname{ker} A^{*}$.

Draw a sketch illustrating the formula $(\operatorname{im} A)^{\perp}=\operatorname{ker} A^{*}$ in this case.
Solution: We need to solve $A^{*} \vec{x}=0$, namely:

$$
x_{1}+x_{2}+x_{3}=0, \quad x_{1}+2 x_{2}+3 x_{3}=0
$$

Hence we obtain that $x_{2}=-2 x_{3}$ and $x_{1}=x_{3}$ so $\vec{v}:=(1,-2,1)$ is a basis for $\operatorname{ker} A^{*}$.

3. [Bretscher, Sec. 5.4\#16] Let $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be an $n \times k$ matrix. Show that

$$
\operatorname{rank} A^{*}=\operatorname{rank} A, \quad \text { that is }, \quad \operatorname{dim}\left(\operatorname{image} A^{*}\right)=\operatorname{dim}(\text { image } A)
$$

Solution: We will use the two formulas

$$
(\operatorname{image} A)^{\perp}=\operatorname{ker} A^{*} \quad \text { and } \quad \operatorname{dim}\left(\operatorname{ker} A^{*}\right)+\operatorname{dim}\left(\text { image } A^{*}\right)=n
$$

[or the equivalent formulas interchanging the roles of A and A^{*}. Since

$$
\operatorname{dim}(\text { image } A)+\operatorname{dim}(\text { image } A)^{\perp}=n
$$

the first formila implies

$$
n-\operatorname{dim}(\operatorname{image} A)=\operatorname{dim}\left(\operatorname{ker} A^{*}\right)
$$

while the second implies

$$
n-\operatorname{dim}\left(\operatorname{image} A^{*}\right)=\operatorname{dim}\left(\operatorname{ker} A^{*}\right)
$$

The result is now clear.
4. [Bretscher, Sec. 5.2\#32] Find an orthonormal basis for the plane $x_{1}+x_{2}+x_{3}=0$.

Solution: Pick any point in the plane, say $\vec{v}_{1}=(1,-1,0)$. This will be the first vector in our orthogonal basis. We use the Gram-Schmidt process to extend this to an orthogonal basis for the plane.
Pick any other point in the plane, say $\vec{w}_{1}:=(1,0-1)$. Write it as $\vec{w}_{1}=a \vec{v}_{1}+\vec{z}$, where \vec{z} is perpendicular to \vec{v}_{1}. Note that, although unknown, \vec{z} will also be in the plane since it will be a linear combination of \vec{v}_{1} and \vec{w}, both of which are in the plane. As usual, by taking the inner product of both sides of $\vec{w}_{1}=a \vec{v}_{1}+\vec{z}$ with \vec{v}_{1}, we find

$$
a=\left\langle\vec{w}_{1}, \vec{v}_{1}\right\rangle /\left\|\vec{v}_{1}\right\|^{2}=\frac{1}{2} .
$$

Thus

$$
\vec{z}=\vec{w}_{1}-\frac{1}{2} \vec{v}_{1}=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1
\end{array}\right)
$$

is in the plane and orthogonal to \vec{v}_{1}. The vectors \vec{v}_{1} and \vec{z} are an orthogonal basis for this plane. To get an orthonormal basis we just make these into unit vectors

$$
\vec{u}_{1}:=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right) \quad \text { and } \quad \vec{u}_{2}:=\frac{\vec{z}}{\|\vec{z}\|}=\frac{1}{\sqrt{3 / 2}}\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1
\end{array}\right)
$$

5. [Bretscher, Sec. 5.3 \#10] Consider the space \mathcal{P}_{2} of real polynomials of degree at most 2 with the inner product

$$
\langle f, g\rangle=\frac{1}{2} \int_{-1}^{1} f(t) g(t) d t .
$$

Find an orthonormal basis for all the functions in \mathcal{P}_{2} that are orthogonal to $f(t)=t$.
Solution: We have that $\left\{1, t, t^{2}\right\}$ is a basis for \mathcal{P}_{2}. The orthogonal complement of t has dimension 2. Because t is an odd polynomial and both 1 and t^{2} are even, the elements in \mathcal{P}_{2} that are orthogonal to t are the polynomials of the form $p(t)=a \cdot 1+b t^{2}$. We want an orthonormal basis for this.

First an orthoginal basis. Let $p_{1}(t)=1$. This will be the first element of our orthogonal basis. For the second we write $t^{2}=a \cdot 1+p_{2}(t)$, where $p_{2}(t)$ is orthogonal to $p_{1}(t)$. As usual, take the inner product of both sides of this with $p_{1}(t)$ to find $\left\langle t^{2}, 1\right\rangle=$ $a\langle 1,1\rangle+\left\langle p_{2}, 1\right\rangle$. Since $\|1\|=1$ and we want $p_{2} \perp 1$, this means $\left\langle t^{2}, 1\right\rangle=a\|1\|^{2}+0=a$. But

$$
\left\langle t^{2}, 1\right\rangle=\frac{1}{2} \int_{-1}^{1} t^{2} \cdot 1 d t=\frac{1}{3} .
$$

Thus $a=1 / 3$ and hence $p_{2}(t)=t^{2}-1 / 3$.
To make p_{1}, p_{2} into an orthonormal basis we compute

$$
\left\|p_{2}\right\|^{2}=\frac{1}{2} \int_{-1}^{1}\left(t^{2}-\frac{1}{3}\right)^{2} d t=\frac{4}{45}
$$

An orthonormal basis of the polynomials in \mathcal{P}_{2} that are orthogonal to t is thus

$$
e_{1}(t)=1, \quad e_{2}(t)=\frac{t^{2}-\frac{1}{3}}{\sqrt{4 / 45}}=\frac{\sqrt{5}}{2}\left(3 t^{2}-1\right) .
$$

6. [Bretscher, Sec. 5.3 \#16] Consider the space \mathcal{P}_{1} with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

a) Find an orthonormal basis for this space. [Suggestion: Let $e_{1}(t)=1$ and pick $e_{2}(t)=a+b t$ to be orthogonal to e_{1}.]
Solution: We let $e_{1}(t)=1$ (it already has length 1). For e_{2} to be orthogonal to e_{1} we need , $e_{2}(t)=c(t-1 / 2)$ for some constant c. Since $\int_{0}^{1}(t-1 / 2)^{2} d t=1 / 12$, then

$$
e_{2}(t)=\sqrt{12}(t-1 / 2)=\sqrt{3}(2 t-1) .
$$

b) Find the linear polynomial $g(t)=a+b t$ that best approximates the polynomial $f(t)=t^{2}$. Thus, one wants to pick $g(t)$ so that $\|f-g\|$ is as small as possible. [Question: In an inner product space V, if you have a subspace $S \subset V$ and a vector $\vec{y} \in V$, how can you find the vector in S that is closest to \vec{y} ?]
Solution: Use the orthogonal projection on S. Since $\left\langle t^{2}, 1\right\rangle=1 / 3$ and $\left\langle t^{2}, \sqrt{3}(2 t-1)\right\rangle=\frac{\sqrt{3}}{6}$, then

$$
g(t)=\operatorname{proj}_{S} f(t)=\sum_{i}\left\langle e_{i}(t), f(t)\right\rangle e_{i}(t)=1 / 3+\frac{\sqrt{3}}{6} \sqrt{3}(2 t-1)=-1 / 6+t .
$$

7. Let $f(x):=\left\{\begin{array}{ll}0 & \text { if }-\pi \leq x \leq-\pi / 2 \\ 1 & \text { if }-\pi / 2<x<\pi / 2 \\ 0 & \text { if } \pi / 2 \leq x \leq \pi\end{array}\right.$ and define $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$. Find the Fourier Series of $f(x)$.
Solution: Using the formulas for the coefficients we have: $a_{0}=\sqrt{\pi / 2}$ and for $n \geq 1$,

$$
a_{n}=\int_{-\pi / 2}^{\pi / 2} \frac{\cos n x}{\sqrt{\pi}} d x=\frac{2}{n \sqrt{\pi}} \sin \left(\frac{n \pi}{2}\right)=\left\{\begin{aligned}
0 & \text { if } n \text { is even, } \\
\frac{2}{n \sqrt{\pi}} & \text { if } n=1,5,9, \ldots, . \\
-\frac{2}{n \sqrt{\pi}} & \text { if } n=3,7,11, \ldots
\end{aligned}\right.
$$

Similarly, $\operatorname{since} \sin n x$ is an odd function,

$$
b_{n}=\frac{1}{\sqrt{\pi}} \int_{-\pi / 2}^{\pi / 2} \sin n x d x=0
$$

Hence,

$$
f(x)=\frac{1}{2}+\frac{2}{\pi}\left[\cos x-\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}-\frac{\cos 7 x}{7}+\cdots\right]
$$

8. [Bretscher, Sec. 5.1 \#37] Consider a plane V in \mathbb{R}^{3} with orthonormal basis \vec{u}_{1} and \vec{u}_{2}. Let \vec{x} be a vector in \mathbb{R}^{3}. Find a formula for the orthogonal reflection $R \vec{x}$ of \vec{x} across the plane V. Your answer will involve $P_{V} \vec{x}$, the orthogonal projection of \vec{x} into the plane V. [Suggestion: Use that $\left(I-P_{V}\right) \vec{x}$ is the component of \vec{x} that is orthogonal to V. In a reflection, this is the part of \vec{x} that is flipped.]

Solution: The key is a picture (first try it in \mathbb{R}^{2} where V is a line through the origin). Let $P_{V} \vec{x}$ be the orthogonal projection of \vec{x} into the plane V. Then $\vec{w}:=$ $P_{V} \perp \vec{x}=\vec{x}-P_{V} \vec{x}$ is the projection of \vec{x} orthogonal to V. From the picture, to get the reflection, replace \vec{w} by $-\vec{w}$

Thus, since $\vec{x}=P_{V} \vec{x}+\vec{w}$, then

$$
R_{V} \vec{x}=P_{V} \vec{x}-\vec{w}=P_{V} \vec{x}-\left(\vec{x}-P_{V} \vec{x}\right)=2 P_{V} \vec{x}-\vec{x} .
$$

In summary, orthogonal projections and reflections for a subspace V are related by the simple formula $R_{V}=2 P_{V}-I$.
Note that if you know an orthonormal basis for V the orthogonal projection, $P_{V} \vec{x}$, is easy to compute All of this is very general. In this problem \vec{u}_{1} and \vec{u}_{2} are an orthonormal basis for the subspace V, so

$$
P_{V} \vec{x}=\left\langle\vec{x}, \vec{u}_{1}\right\rangle \vec{u}_{1}+\left\langle\vec{x}, \vec{u}_{2}\right\rangle \vec{u}_{2} .
$$

Consequently,

$$
R_{V} \vec{x}=2\left(\left\langle\vec{x}, \vec{u}_{1}\right\rangle \vec{u}_{1}+\left\langle\vec{x}, \vec{u}_{2}\right\rangle \vec{u}_{2}\right)-\vec{x} .
$$

9. Let V be a linear space with an inner product and $P: V \rightarrow V$ a linear map. P is called a projection if $P^{2}=P$. Let $Q:=I-P$.
a) Show that $Q^{2}=Q$, so Q is also a projection.

Show that the image of P is the kernel of Q.
Solution: $\quad Q^{2}=I-P I-I P+P^{2}=I-P-P+P=I-P=Q$.
We need to show that $\operatorname{im} P \subset \operatorname{ker} Q$ and $\operatorname{ker} Q \subset \operatorname{im} P$. Say $x \in \operatorname{im} P$, then $x=P y$ for some y. Thus

$$
(I-P) x=I x-P x=I x-P^{2} y=I x-P y=x-x=0 .
$$

Conversely, say $y \in \operatorname{ker} Q$, then $y=I y=P y$ so $y \in \operatorname{im} P$.
b) A projection P is called an orthogonal projection if the image of P is orthogonal to the kernel of P. If $P=P^{*}$, show that P is an orthogonal projection.
Solution: Let $x \in \operatorname{ker} Q=\operatorname{im} P$ and $y \in \operatorname{ker} P$. Since $x=P x$ and $P y=0$, then $\langle x, y\rangle=\langle P x, y\rangle=\left\langle x, P^{*} y\right\rangle=\langle x, P y\rangle=0$.
c) Conversely, if P is an orthogonal projection, show that $P=P^{*}$.

Solution: We will show that $\langle P x, y\rangle=\langle x, P y\rangle$ for all x and y. Write $x=$ $P x+(I-P) x=x_{1}+x_{2}$. Note that $x_{1} \in \operatorname{im}(P)$ and $x_{2} \in \operatorname{ker}(P)$. Similarly
write $y=P y+(I-P) y=y_{1}+y_{2}$. By assumption the image and kernel of P are orthogonal, so x_{1} and y_{2} are orthogonal, as are x_{2} and y_{1}. The following computation completes the proof.

$$
\langle P x, y\rangle=\left\langle x_{1}, y_{1}+y_{2}\right\rangle=\left\langle x_{1}, y_{1}\right\rangle \quad \text { and } \quad\langle x, P y\rangle=\left\langle x_{1}+x_{2}, y_{1}\right\rangle=\left\langle x_{1}, y_{1}\right\rangle .
$$

Alternate: Since the image and kernel of P are orthogonal, then $\langle(I-P) x, P y\rangle=$ 0 for all x and y. Thus,

$$
\langle x, P y\rangle=\langle P x, P y\rangle=\left\langle x, P^{*} P y\right\rangle
$$

for all x and y. This implies that $P=P^{*} P$. Since $P^{*} P$ is self-adjoint, this shows that P is self-adjoint.
10. Let A be a real matrix, not necessarily square.
a) If A is onto, show that A^{*} is one-to-one.

Solution: Since $\operatorname{im} A^{\perp}=\operatorname{ker} A^{*}$, thus $\operatorname{ker} A=0$.
b) If A is one-to-one, show that A^{*} is onto.

Solution: Similarly, $\operatorname{im} A^{* \perp}=\operatorname{ker} A$.
11. Let A be a real matrix, not necessarily square.
a) Show that both $A^{*} A$ and $A A^{*}$ are self-adjoint.

Solution: Using $(A B)^{*}=B^{*} A^{*}$ and $\left(A^{*}\right)^{*}=A$, this is easy.
The example $A:=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ is illuminating. Here

$$
A^{*} A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad A A^{*}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

b) Show that $\operatorname{ker} A=\operatorname{ker} A^{*} A$. [Hint: Show separately that $\operatorname{ker} A \subset \operatorname{ker} A^{*} A$ and $\operatorname{ker} A \supset \operatorname{ker} A^{*} A$. The identity $\left\langle\vec{x}, A^{*} A \vec{x}\right\rangle=\langle A \vec{x}, A \vec{x}\rangle$ is useful.]
Solution: If $\vec{x} \in \operatorname{ker} A$, then $A \vec{x}=0$ so $A^{*} A \vec{x}=A^{*} 0=0$. Thus $\vec{x} \in \operatorname{ker} A^{*} A$. In other words, $\operatorname{ker} A \subset \operatorname{ker} A^{*} A$.
Conversely, if $\vec{x} \in \operatorname{ker} A^{*} A$, then $A^{*} A \vec{x}=0$ so

$$
0=\left\langle\vec{x}, A^{*} A \vec{x}\right\rangle=\langle A \vec{x}, A \vec{x}\rangle=\|A \vec{x}\|^{2} .
$$

Consequently $A \vec{x}=0$, that is, $\vec{x} \in \operatorname{ker} A$. This proves that $\operatorname{ker} A^{*} A \subset \operatorname{ker} A$.
c) If A is one-to-one, show that $A^{*} A$ is invertible

Solution: From part (b) the square matrix $A^{*} A$ is $1-1$, hence it is invertible.
d) If A is onto, show that $A A^{*}$ is invertible.

Solution: From exercise 10, part (a) we have that A^{*} is $1-1$. Therefore as in part (c), $A A^{*}$ is 1-1 so the square matrix $A A^{*}$ is invertible.
12. [This question is now a bonus question (see below).]

Quadratic Polynomials Using Inner Products

If A is a real symmetric matrix (so it is self-adjoint), then $Q(\vec{x}):=\langle\vec{x}, A \vec{x}\rangle$ is a quadratic polynomial. Given a quadratic polynomial, it is easy to find the (unique) symmetric symmentic matrix A. Here is an example. Say $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$ To find A, note that $-8 x_{1} x_{2}=-4 x_{1} x_{2}-4 x_{2} x_{2}$ so we can rewite Q as

$$
Q(\vec{x}):=3 x_{1}^{2}-4 x_{1} x_{2}-4 x_{2} x_{1}-5 x_{2}^{2} .
$$

If we let

$$
A:=\left(\begin{array}{rr}
3 & -4 \\
-4 & -5
\end{array}\right) \quad[\text { Note } A \text { is a symmetric matrix }]
$$

then it is easy to verify that $Q(\vec{x})=\langle\vec{x}, A \vec{x}\rangle$. In the remaining problems we will use this to help work with quadratic polynomials.
13. In each of these find a 3×3 symmetric matrix A so that $Q(\vec{x})=\langle\vec{x}, A \vec{x}\rangle$.
a) $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}+x_{3}^{2}$.

Solution: $A=\left(\begin{array}{ccc}3 & -4 & 0 \\ -4 & -5 & 0 \\ 0 & 0 & 1\end{array}\right)$
b) $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}-x_{2} x_{3}+x_{3}^{2}$.

Solution: $\quad A=\left(\begin{array}{ccc}3 & -4 & 0 \\ -4 & -5 & -1 / 2 \\ 0 & -1 / 2 & 1\end{array}\right)$
c) $\quad Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}-x_{2} x_{3}$.

Solution: $\quad A=\left(\begin{array}{ccc}3 & -4 & 0 \\ -4 & -5 & -1 / 2 \\ 0 & -1 / 2 & 0\end{array}\right)$
14. [Lower order terms and Completing the Square] Which is simpler:

$$
z=x_{1}^{2}+4 x_{2}^{2}-2 x_{1}+4 x_{2}+2 \quad \text { or } \quad z=y_{1}^{2}+4 y_{2}^{2} ?
$$

If we let $y_{1}=x_{1}-1$ and $y_{2}=x_{2}+1 / 2$, they are essentially the same. All we did was translate the origin to $(1,-1 / 2)$.

The point of this problem is to generalize this to quadratic polynomials in several variables. Let

$$
\begin{aligned}
Q(\vec{x}) & =\sum a_{i j} x_{i} x_{j}+2 \sum b_{i} x_{i}+c \\
& =\langle\vec{x}, A \vec{x}\rangle+2\langle b, \vec{x}\rangle+c
\end{aligned}
$$

be a real quadratic polynomial so $\vec{x}=\left(x_{1}, \ldots, x_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right)$ are real vectors and $A=\left(a_{i j}\right)$ is a real symmetric $n \times n$ matrix.
In the case $n=1, Q(x)=a x^{2}+2 b x+c$ which is clearly simpler in the special case $b=0$. In this case, if $a \neq 0$, by completing the square we find

$$
Q(x)=a(x+b / a)^{2}+c-2 b^{2} / a=a y^{2}+\gamma,
$$

where we let $y=x-b / a$ and $\gamma=c-b^{2} / a$. Thus, by translating the origin: $x=$ $y+b / a$ we can eliminate the linear term in the quadatratic polynomial - so it becomes simpler.
a) Similarly, for any dimension n, if A is invertible, using the above as a model, show there is a change of variables $\vec{y}==\vec{x}-\vec{v}$ (this is a translation by the vector \vec{v}) so that in the new \vec{y} variables Q hasthe form

$$
\hat{Q}(\vec{y}):=Q(\vec{y}+\vec{v})=\langle\vec{y}, A \vec{y}\rangle+\gamma \quad \text { that is, } \quad \hat{Q}(\vec{y})=\sum a_{i j} y_{i} y_{j}+\gamma,
$$

where γ involves A, b, and c - but no terms that are linear in \vec{y}. [In the case $n=1$, which you should try first, this means using a change of variables $y=x-v$ to change the polynomial $a x^{2}+2 b x+c$ to the simpler $a y^{2}+\gamma$.]
Solutions: First the case $n=1$ again. Then $Q(x)=A x^{2}+2 b x+c$ so

$$
\begin{aligned}
Q(x)=Q(y+v) & =A(y+v)^{2}+2 b(y+v)+c \\
& =A y^{2}+(2 A v+2 b) y+A v^{2}+2 b v+c .
\end{aligned}
$$

To kill the linear term, pick v so that $2 A v+2 b=0$, that is, $v=-b / A$. Then $Q(x)=A y^{2}+\gamma$, where

$$
\gamma=A b^{2} / A^{2}-2 b^{2} / A+c=-b^{2} / A+c .
$$

Next, the case of arbitrary n. It should now feel routine. We are trying the change of variables $\vec{x}==\vec{y}-\vec{v}$ with the thought of picking \vec{v} to simplify the result. The following should be a straightforward computation (the third line uses $A=A^{*}$):

$$
\begin{aligned}
Q(\vec{x}) & =Q(\vec{y}+\vec{v})=\langle\vec{y}+\vec{v}, A(\vec{y}+\vec{v})\rangle+\langle\vec{b}, \vec{y}+\vec{v}\rangle+c \\
& =\langle\vec{y}, A \vec{y}\rangle+\langle\vec{y}, A \vec{v}\rangle+\langle\vec{v}, A \vec{y}\rangle+\langle\vec{v}, A \vec{v}\rangle+2\langle\vec{b}, \vec{y}\rangle+2\langle\vec{b}, \vec{v}\rangle+c \\
& =\langle\vec{y}, A \vec{y}\rangle+\langle 2 A \vec{v}+2 \vec{b}, \vec{y}\rangle+\langle\vec{v}, A \vec{v}\rangle+2\langle\vec{b}, \vec{v}\rangle+c .
\end{aligned}
$$

The term that is linear in \vec{y} will vanish if we pick \vec{v} so that $2 A \vec{v}+2 \vec{b}=0$, that is, $\vec{v}=-A^{-1} \vec{b}$. Then

$$
Q(\vec{x})=\langle\vec{y}, A \vec{y}\rangle+\gamma
$$

where

$$
\gamma=\left\langle A^{-1} \vec{b}, \vec{b}\right\rangle-2\left\langle\vec{b}, A^{-1} \vec{b}\right\rangle+c=-\left\langle\vec{b}, A^{-1} \vec{b}\right\rangle+c .
$$

This agrees with what we found in the special case $n=1$.
b) As an example, apply this to $Q(\vec{x})=2 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}-4$.

Solution: Here $Q(\vec{x})=\langle\vec{x}, A \vec{x}\rangle+2\langle\vec{b}, \vec{x}\rangle+c$, where $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right), \vec{b}=\binom{0}{3 / 2}$, and $c=-4$. Thus $A^{-1}=\left(\begin{array}{cc}0 & 1 \\ 1 & -2\end{array}\right)$ so $\vec{v}=-A^{-1} \vec{b}=\binom{3 / 2}{-3}$.
15. For $\vec{x} \in \mathbb{R}^{n}$ let $Q(\vec{x}):=\langle\vec{x}, A \vec{x}\rangle$, where A is a real symmetric matrix. We say that A is positive definite if $Q(\vec{x})>0$ for all $\vec{x} \neq 0$, negative definite if $Q(\vec{x})<0$ for all $\vec{x} \neq 0$, and indefinite if $Q(\vec{x})>0$ for some \vec{x} but $Q(\vec{x})<0$ for some other \vec{x}.
a) In the special case $n=2$ give (simple!) examples of matrices A that are positive definite, negative definite, and indefinite.
Solution: Several examples. Begin with the polynomial, not the matrix.
positive definite: If $\langle\vec{x}, A \vec{x}\rangle=x_{1}^{2}+x_{2}^{2}$ then A is the identity matrix I, and $\langle\vec{x}, A \vec{x}\rangle=2 x_{1}^{2}+3 x_{2}^{2}$ so $A=\left(\begin{array}{cc}2 & 0 \\ 0 & 3\end{array}\right)$.
negative definite: For $\langle\vec{x}, A \vec{x}\rangle=-x_{1}^{2}-x_{2}^{2}$, the matrix is $-I$ while for $\langle\vec{x}, A \vec{x}\rangle=$ $-2 x_{1}^{2}-3 x_{2}^{2}$, the matrix is $\left(\begin{array}{cc}-2 & 0 \\ 0 & -3\end{array}\right)$.
indefinite: For $\langle\vec{x}, A \vec{x}\rangle=x_{1}^{2}-x_{2}^{2}$ the matrix is $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ while for $\langle\vec{x}, A \vec{x}\rangle=-2 x_{1}^{2}+$ $5 x_{2}^{2}$ the matrix is $\left(\begin{array}{cc}-2 & 0 \\ 0 & 3\end{array}\right)$.
Note: If $\langle\vec{x}, A \vec{x}\rangle=3 x_{2}^{2}$, the matrix is $A:=\left(\begin{array}{ll}0 & 0 \\ 0 & 3\end{array}\right)$ is not positive definite, it is positive semi-definite, that is, $\langle\vec{x}, A \vec{x}\rangle \geq 0$ for all \vec{x} but $\langle\vec{x}, A \vec{x}\rangle=0$ for some $\vec{x} \neq 0$.
b) In the special case where A is an invertible diagonal matrix,

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

under what conditions is $Q(\vec{x})$ positive definite, negative definite, and indefinite? [REMARK: We will see that the general case can always be reduced to this special case where A is diagonal.]
Solution: Key step: here

$$
\langle\vec{x}, A \vec{x}\rangle=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\cdots+\lambda_{n} x_{n}^{2}
$$

If we let $\vec{x}=(0,1,0, \ldots, 0)$, clearly $\langle\vec{x}, A \vec{x}\rangle=\lambda_{2}$ so if A is positive definite, then $\lambda_{2}>0$. Similarly, if A is positive definite, then all the λ_{j} are positive.
Conversely, if all the λ_{J} are positive, it is clear that A is positive definite.
By the same reasoning, A is negative definite if (and only if) all the $\lambda_{j}<0$, and indefinite if at least one λ_{j} is positive and another is negative.
Note: the assumption " A is invertible" implies that none of the λ_{j} are zero.

Bonus Problems

[Please give this directly to Professor Kazdan]
B-1 Let $\mathcal{S}:=\left\{u(x) \in C^{2}[0, \pi]\right.$ with $\left.u(0)=u(\pi)=0\right\}$ and let $L u:=-u^{\prime \prime}(x)$. Use the inner product $\langle u, v\rangle=\int_{0}^{\pi} u(x) v(x) d x$.
a) If u and v are in \mathcal{S}, show that $\langle L u, v\rangle=\langle u, L v\rangle$. This shows that L is self-adjoint on this space of functions. [Hint: Integrate by parts.]
Solution: Using integration by parts you obtain $\langle L u, v\rangle=\int_{0}^{\pi} u^{\prime} v^{\prime} d x$ and $\langle v, L u\rangle=\langle L u, v\rangle=\int_{0}^{\pi} u^{\prime} v^{\prime} d x$.
b) If $u(x) \in \mathcal{S}, u \not \equiv 0$, is an eigenfunction of L, so $L u=\lambda u$ for some constant λ, show that $\lambda>0$. [Hint: Compute $\langle L u, u\rangle$ and integrate by parts.]
Solution: If $\lambda=0$ then u solves $u^{\prime \prime}=0$ and get $u \notin \mathcal{S}$ so we have a contradiction. Hence $\lambda \neq 0$. Now, $\lambda\langle u, u\rangle=\langle L u, u\rangle=\int_{0}^{\pi}\left(u^{\prime}\right)^{2} d x \geq 0$ Hence $\lambda \geq 0$. Thus $\lambda>0$.
c) Find the eigenvalues λ_{k} and eigenfunctions $u_{k}(x)$ of L (remember to use the boundary conditions $u(0)=u(\pi)=0)$.
Solution: For this part see to the notes:
http://hans.math.upenn.edu/~kazdan/312S13/notes/Lu=-DDu.pdf.

B-2 Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a linear map that is onto but not one-to-one. Say X_{1} is a solution of $A X=Y$. Is there a "best" possible solution? What can one say? Think about this before reading the next paragraph.
a) Show that $A A^{*}$ is invertible so there is exactly one solution V of $A A^{*} V=Y$. Thus the vector $X_{2}:=A^{*} V$ is also a solution of $A X=Y$.
Solution: Since A is onto we have that A^{*} is one-to-one, namely $\operatorname{ker} A^{*}=\{0\}$ and hence that the square matrix $A A^{*}$ is invertible. [This is the same as Problem 11d) above.]
b) Show that if X_{1} is any solution of $A X=Y$, then X_{2} is closer to the origin, that is, $\left\|X_{2}\right\| \leq\left\|X_{1}\right\|$. In other words, X_{2} is the solution that is closest to the origin. [Hint: the general solution of $A X=Y$ is $X=X_{2}+Z$ where $Z \in \operatorname{ker} A$.]

Solution: We have that $X_{2}=A^{*} V \in \operatorname{im} A^{*}=(\operatorname{ker} A)^{\perp}$ and $X_{1}=X_{2}+Z$ for some $Z \in \operatorname{ker} A$, hence Z and X_{2} are orthogonal. Then by the Pythagorean theorem we have that

$$
\left\|X_{1}\right\|^{2}=\left\|X_{2}+Z\right\|^{2}=\left\|X_{2}\right\|^{2}+\|Z\|^{2} \geq\left\|X_{2}\right\|^{2}
$$

[Last revised: March 25, 2014]

