
Math 312, Spring 2014 Jerry L. Kazdan

Problem Set 6

Due: In class Thurs, March 6. Late papers will be accepted until 1:00 PM Friday.

1. [Bretscher, Sec. 5.1 #26] Find the orthogonal projection PS of ~x :=

0
@4949
49

1
A into

the subspace S of R3 spanned by ~v1 :=

0
@23
6

1
A and ~v2 :=

0
@ 3
�6
2

1
A .

Solution: We are fortunate that the vectors ~v1 and ~v2 are orthogonal. We want to
�nd constants a and b so that

~x = a~v1 + b~v2 + ~w; (1)

where ~w is orthogonal to S . Then the desired projection will be PS~x = a~v1 + b~v2 . To
�nd the scalars a and n , take the inner product of (1) with ~v1 and then ~v2 we �nd

h~x; ~v1i = ak~v1k2 and h~x; ~v2i = bk~v2k2:

Using the particular vectors in this problem, a = 11 and b = �1. Thus

PS~x = 11~v1 � ~v2 =

0
@1939
64

1
A

2. [Bretscher, Sec. 5.4 #2] Let A =

0
@1 1
1 2
1 3

1
A . Find a basis for kerA� .

Draw a sketch illustrating the formula (imA)? = kerA� in this case.

Solution: We need to solve A�~x = 0, namely:

x1 + x2 + x3 = 0; x1 + 2x2 + 3x3 = 0

Hence we obtain that x2 = �2x3 and x1 = x3 so ~v := (1;�2; 1) is a basis for kerA� .
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3. [Bretscher, Sec. 5.4 #16] Let A : Rk ! R
n be an n� k matrix. Show that

rankA� = rankA; that is, dim(imageA�) = dim(imageA)

Solution: We will use the two formulas

(imageA)? = kerA� and dim(kerA�) + dim(imageA�) = n

[or the equivalent formulas interchanging the roles of A and A� ]. Since

dim(imageA) + dim(imageA)? = n;

the �rst formila implies

n� dim(imageA) = dim(kerA�);

while the second implies

n� dim(imageA�) = dim(kerA�)

The result is now clear.

4. [Bretscher, Sec. 5.2 #32] Find an orthonormal basis for the plane x1+x2+x3 = 0.

Solution: Pick any point in the plane, say ~v1 = (1;�1; 0). This will be the �rst
vector in our orthogonal basis. We use the Gram-Schmidt process to extend this to an
orthogonal basis for the plane.

Pick any other point in the plane, say ~w1 := (1; 0�1). Write it as ~w1 = a~v1+~z , where
~z is perpendicular to ~v1 . Note that, although unknown, ~z will also be in the plane
since it will be a linear combination of ~v1 and ~w , both of which are in the plane. As
usual, by taking the inner product of both sides of ~w1 = a~v1 + ~z with ~v1 , we �nd

a = h~w1; ~v1i=k~v1k2 = 1

2
:

Thus

~z = ~w1 � 1

2
~v1 =

0
@1=21=2
�1

1
A

is in the plane and orthogonal to ~v1 . The vectors ~v1 and ~z are an orthogonal basis for
this plane. To get an orthonormal basis we just make these into unit vectors

~u1 :=
~v1
k~v1k =

1p
2

0
@ 1
�1
0

1
A and ~u2 :=

~z

k~zk =
1p
3=2

0
@1=21=2
�1

1
A
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5. [Bretscher, Sec. 5.3 #10] Consider the space P2 of real polynomials of degree at
most 2 with the inner product

hf; gi = 1

2

Z
1

�1
f(t)g(t) dt:

Find an orthonormal basis for all the functions in P2 that are orthogonal to f(t) = t .

Solution: We have that f1; t; t2g is a basis for P2 . The orthogonal complement of
t has dimension 2. Because t is an odd polynomial and both 1 and t2 are even, the
elements in P2 that are orthogonal to t are the polynomials of the form p(t) = a�1+bt2 .
We want an orthonormal basis for this.

First an orthoginal basis. Let p1(t) = 1. This will be the �rst element of our orthogonal
basis. For the second we write t2 = a � 1 + p2(t), where p2(t) is orthogonal to p1(t).
As usual, take the inner product of both sides of this with p1(t) to �nd ht2; 1i =
ah1; 1i+hp2; 1i . Since k1k = 1 and we want p2 ? 1, this means ht2; 1i = ak1k2+0 = a .
But

ht2; 1i = 1

2

Z
1

�1
t2 � 1 dt = 1

3
:

Thus a = 1=3 and hence p2(t) = t2 � 1=3.

To make p1 , p2 into an orthonormal basis we compute

kp2k2 = 1

2

Z
1

�1

�
t2 � 1

3

�
2

dt =
4

45
:

An orthonormal basis of the polynomials in P2 that are orthogonal to t is thus

e1(t) = 1; e2(t) =
t2 � 1

3p
4=45

=
p
5

2
(3t2 � 1):

6. [Bretscher, Sec. 5.3 #16] Consider the space P1 with the inner product

hf; gi =
Z

1

0

f(t)g(t) dt:

a) Find an orthonormal basis for this space. [Suggestion: Let e1(t) = 1 and pick
e2(t) = a+ bt to be orthogonal to e1 .]

Solution: We let e1(t) = 1 (it already has length 1). For e2 to be orthogonal to
e1 we need ; e2(t) = c(t� 1=2) for some constant c . Since

R
1

0
(t� 1=2)2 dt = 1=12,

then
e2(t) =

p
12(t� 1=2) =

p
3(2t� 1):
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b) Find the linear polynomial g(t) = a + bt that best approximates the polynomial
f(t) = t2 . Thus, one wants to pick g(t) so that kf � gk is as small as possible.
[Question: In an inner product space V , if you have a subspace S � V and a
vector ~y 2 V , how can you �nd the vector in S that is closest to ~y?]

Solution: Use the orthogonal projection on S . Since ht2; 1i = 1=3 and

ht2; p3(2t� 1)i =
p
3

6
, then

g(t) = projSf(t) =
X
i

hei(t); f(t)iei(t) = 1=3 +

p
3

6

p
3(2t� 1) = �1=6 + t:

7. Let f(x) :=

8><
>:
0 if �� � x � ��=2
1 if ��=2 < x < �=2

0 if �=2 � x � �

and de�ne hf; gi =
Z �

��
f(x)g(x) dx . Find the

Fourier Series of f(x).

Solution: Using the formulas for the coe�cients we have: a0 =
p
�=2 and for n � 1,

an =

Z �=2

��=2

cosnxp
�

dx =
2

n
p
�
sin(

n�

2
) =

8>><
>>:

0 if n is even;
2

n
p
�

if n = 1; 5; 9; : : :;

� 2

n
p
�

if n = 3; 7; 11; : : :

:

Similarly, since sinnx is an odd function,

bn =
1p
�

Z �=2

��=2
sinnx dx = 0;

Hence,

f(x) =
1

2
+

2

�

�
cosx� cos 3x

3
+

cos 5x

5
� cos 7x

7
+ � � �

�

8. [Bretscher, Sec. 5.1 #37] Consider a plane V in R
3 with orthonormal basis ~u1

and ~u2 . Let ~x be a vector in R3 . Find a formula for the orthogonal re
ection R~x of ~x
across the plane V . Your answer will involve PV ~x , the orthogonal projection of ~x into
the plane V . [Suggestion: Use that (I�PV )~x is the component of ~x that is orthogonal
to V . In a re
ection, this is the part of ~x that is 
ipped.]

Solution: The key is a picture (�rst try it in R
2 where V is a line through the

origin). Let PV ~x be the orthogonal projection of ~x into the plane V . Then ~w :=
PV ?~x = ~x� PV ~x is the projection of ~x orthogonal to V . From the picture, to get the
re
ection, replace ~w by �~w

Thus, since ~x = PV ~x+ ~w , then

RV ~x = PV ~x� ~w = PV ~x� (~x� PV ~x) = 2PV ~x� ~x:
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In summary, orthogonal projections and re
ections for a subspace V are related by the
simple formula RV = 2PV � I .

Note that if you know an orthonormal basis for V the orthogonal projection, PV ~x ,
is easy to compute All of this is very general. In this problem ~u1 and ~u2 are an
orthonormal basis for the subspace V , so

PV ~x = h~x; ~u1i~u1 + h~x; ~u2i~u2:

Consequently,
RV ~x = 2(h~x; ~u1i~u1 + h~x; ~u2i~u2)� ~x:

9. Let V be a linear space with an inner product and P : V ! V a linear map. P is
called a projection if P 2 = P . Let Q := I � P .

a) Show that Q2 = Q , so Q is also a projection.

Show that the image of P is the kernel of Q .

Solution: Q2 = I � PI � IP + P 2 = I � P � P + P = I � P = Q .

We need to show that imP � kerQ and kerQ � imP . Say x 2 imP , then x = Py
for some y . Thus

(I � P )x = Ix� Px = Ix� P 2y = Ix� Py = x� x = 0:

Conversely, say y 2 kerQ , then y = Iy = Py so y 2 imP .

b) A projection P is called an orthogonal projection if the image of P is orthogonal
to the kernel of P . If P = P � , show that P is an orthogonal projection.

Solution: Let x 2 kerQ = imP and y 2 kerP . Since x = Px and Py = 0,
then hx; yi = hPx; yi = hx; P �yi = hx; Pyi = 0.

c) Conversely, if P is an orthogonal projection, show that P = P � .

Solution: We will show that hPx; yi = hx; Pyi for all x and y . Write x =
Px + (I � P )x = x1 + x2 . Note that x1 2 im (P ) and x2 2 ker (P ). Similarly
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write y = Py + (I � P )y = y1 + y2 . By assumption the image and kernel of P
are orthogonal, so x1 and y2 are orthogonal, as are x2 and y1 . The following
computation completes the proof.

hPx; yi = hx1; y1 + y2i = hx1; y1i and hx; Pyi = hx1 + x2; y1i = hx1; y1i:

Alternate: Since the image and kernel of P are orthogonal, then h(I�P )x; Pyi =
0 for all x and y . Thus,

hx; Pyi = hPx; Pyi = hx; P �Pyi

for all x and y . This implies that P = P �P . Since P �P is self-adjoint, this shows
that P is self-adjoint.

10. Let A be a real matrix, not necessarily square.

a) If A is onto, show that A� is one-to-one.

Solution: Since imA? = kerA� , thus kerA = 0.

b) If A is one-to-one, show that A� is onto.

Solution: Similarly, imA�? = kerA .

11. Let A be a real matrix, not necessarily square.

a) Show that both A�A and AA� are self-adjoint.

Solution: Using (AB)� = B�A� and (A�)� = A , this is easy.

The example A :=

�
1 0 0
0 1 0

�
is illuminating. Here

A�A =

0
@1 0 0
0 1 0
0 0 0

1
A and AA� =

�
1 0
0 1

�
:

b) Show that kerA = kerA�A . [Hint: Show separately that kerA � kerA�A and
kerA � kerA�A . The identity h~x; A�A~xi = hA~x; A~xi is useful.]
Solution: If ~x 2 kerA , then A~x = 0 so A�A~x = A�0 = 0. Thus ~x 2 kerA�A .
In other words, kerA � kerA�A .

Conversely, if ~x 2 kerA�A , then A�A~x = 0 so

0 = h~x; A�A~xi = hA~x; A~xi = kA~xk2:

Consequently A~x = 0, that is, ~x 2 kerA . This proves that kerA�A � kerA .

c) If A is one-to-one, show that A�A is invertible

Solution: From part (b) the square matrix A�A is 1-1, hence it is invertible.
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d) If A is onto, show that AA� is invertible.

Solution: From exercise 10, part (a) we have that A� is 1-1. Therefore as in
part (c), AA� is 1-1 so the square matrix AA� is invertible.

12. [This question is now a bonus question (see below).]

Quadratic Polynomials Using Inner Products

If A is a real symmetric matrix (so it is self-adjoint), then Q(~x) := h~x; A~xi is a quadratic
polynomial. Given a quadratic polynomial, it is easy to �nd the (unique) symmetric sym-
mentic matrix A . Here is an example. Say Q(~x) := 3x2

1
�8x1x2�5x2

2
To �nd A , note that

�8x1x2 = �4x1x2 � 4x2x2 so we can rewite Q as

Q(~x) := 3x21 � 4x1x2 � 4x2x1 � 5x22:

If we let

A :=

�
3 �4

�4 �5
�

[Note A is a symmetric matrix];

then it is easy to verify that Q(~x) = h~x; A~xi . In the remaining problems we will use this
to help work with quadratic polynomials.

13. In each of these �nd a 3� 3 symmetric matrix A so that Q(~x) = h~x; A~xi .
a) Q(~x) := 3x2

1
� 8x1x2 � 5x2

2
+ x2

3
.

Solution: A =

0
@ 3 �4 0
�4 �5 0
0 0 1

1
A

b) Q(~x) := 3x2
1
� 8x1x2 � 5x2

2
� x2x3 + x2

3
.

Solution: A =

0
@ 3 �4 0
�4 �5 �1=2
0 �1=2 1

1
A

c) Q(~x) := 3x2
1
� 8x1x2 � 5x2

2
� x2x3 .

Solution: A =

0
@ 3 �4 0
�4 �5 �1=2
0 �1=2 0

1
A

14. [Lower order terms and Completing the Square] Which is simpler:

z = x21 + 4x22 � 2x1 + 4x2 + 2 or z = y21 + 4y22 ?

If we let y1 = x1 � 1 and y2 = x2 + 1=2, they are essentially the same. All we did was
translate the origin to (1; �1=2).
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The point of this problem is to generalize this to quadratic polynomials in several
variables. Let

Q(~x) =
X

aijxixj + 2
X

bixi + c

= h~x; A~xi+ 2hb; ~xi+ c

be a real quadratic polynomial so ~x = (x1; : : : ; xn), ~b = (b1; : : : ; bn) are real vectors
and A = (aij) is a real symmetric n� n matrix.

In the case n = 1, Q(x) = ax2 + 2bx + c which is clearly simpler in the special case
b = 0. In this case, if a 6= 0, by completing the square we �nd

Q(x) = a (x+ b=a)2 + c� 2b2=a = ay2 + 
;

where we let y = x � b=a and 
 = c � b2=a . Thus, by translating the origin: x =
y+ b=a we can eliminate the linear term in the quadatratic polynomial { so it becomes
simpler.

a) Similarly, for any dimension n , if A is invertible, using the above as a model, show
there is a change of variables ~y == ~x� ~v (this is a translation by the vector ~v ) so
that in the new ~y variables Q hasthe form

Q̂(~y) := Q(~y + ~v) = h~y; A~yi+ 
 that is, Q̂(~y) =
X

aijyiyj + 
;

where 
 involves A , b , and c { but no terms that are linear in ~y . [In the case
n = 1, which you should try �rst, this means using a change of variables y = x� v
to change the polynomial ax2 + 2bx+ c to the simpler ay2 + 
 .]

Solutions: First the case n = 1 again. Then Q(x) = Ax2 + 2bx+ c so

Q(x) = Q(y + v) =A(y + v)2 + 2b(y + v) + c

=Ay2 + (2Av + 2b)y +Av2 + 2bv + c:

To kill the linear term, pick v so that 2Av + 2b = 0, that is, v = �b=A . Then
Q(x) = Ay2 + 
 , where


 = Ab2=A2 � 2b2=A+ c = �b2=A+ c:

Next, the case of arbitrary n . It should now feel routine. We are trying the change
of variables ~x == ~y � ~v with the thought of picking ~v to simplify the result. The
following should be a straightforward computation (the third line uses A = A� ):

Q(~x) =Q(~y + ~v) = h~y + ~v; A(~y + ~v)i+ h~b; ~y + ~vi+ c

=h~y; A~yi+ h~y; A~vi+ h~v; A~yi+ h~v; A~vi+ 2h~b; ~yi+ 2h~b; ~vi+ c

=h~y; A~yi+ h2A~v + 2~b; ~yi+ h~v; A~vi+ 2h~b; ~vi+ c:
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The term that is linear in ~y will vanish if we pick ~v so that 2A~v + 2~b = 0, that is,
~v = �A�1~b . Then

Q(~x) = h~y; A~yi+ 


where

 = hA�1~b; ~bi � 2h~b; A�1~bi+ c = �h~b; A�1~bi+ c:

This agrees with what we found in the special case n = 1.

b) As an example, apply this to Q(~x) = 2x2
1
+ 2x1x2 + 3x2 � 4.

Solution: Here Q(~x) = h~x; A~xi+ 2h~b; ~xi+ c , where A =

�
2 1
1 0

�
, ~b =

�
0
3=2

�
,

and c = �4. Thus A�1 =
�
0 1
1 �2

�
so ~v = �A�1~b =

�
3=2
�3
�
.

15. For ~x 2 Rn let Q(~x) := h~x; A~xi , where A is a real symmetric matrix. We say that A
is positive de�nite if Q(~x) > 0 for all ~x 6= 0, negative de�nite if Q(~x) < 0 for all ~x 6= 0,
and inde�nite if Q(~x) > 0 for some ~x but Q(~x) < 0 for some other~x .

a) In the special case n = 2 give (simple!) examples of matrices A that are positive
de�nite, negative de�nite, and inde�nite.

Solution: Several examples. Begin with the polynomial, not the matrix.

positive de�nite: If h~x; A~xi = x2
1
+ x2

2
then A is the identity matrix I , and

h~x; A~xi = 2x2
1
+ 3x2

2
so A = ( 2 0

0 3
).

negative de�nite: For h~x; A~xi = �x2
1
� x2

2
, the matrix is �I while for h~x; A~xi =

�2x2
1
� 3x2

2
, the matrix is (�2 0

0 �3 ).
inde�nite: For h~x; A~xi = x2

1
�x2

2
the matrix is ( 1 0

0 �1 ) while for h~x; A~xi = �2x2
1
+

5x2
2
the matrix is (�2 0

0 3
).

Note: If h~x; A~xi = 3x2
2
, the matrix is A := ( 0 0

0 3
) is not positive de�nite, it is

positive semi-de�nite, that is, h~x; A~xi � 0 for all ~x but h~x; A~xi = 0 for some
~x 6= 0.

b) In the special case where A is an invertible diagonal matrix,

A =

0
BBB@
�1 0 � � � 0
0 �2 � � � 0
...

...
. . . 0

0 0 � � � �n

1
CCCA ;

under what conditions is Q(~x) positive de�nite, negative de�nite, and inde�nite?
[Remark: We will see that the general case can always be reduced to this special
case where A is diagonal.]

Solution: Key step: here

h~x; A~xi = �1x
2

1 + �2x
2

2 + � � �+ �nx
2

n:
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If we let ~x = (0; 1; 0; : : : ; 0), clearly h~x; A~xi = �2 so if A is positive de�nite, then
�2 > 0. Similarly, if A is positive de�nite, then all the �j are positive.

Conversely, if all the �J are positive, it is clear that A is positive de�nite.

By the same reasoning, A is negative de�nite if (and only if) all the �j < 0, and
inde�nite if at least one �j is positive and another is negative.

Note: the assumption \A is invertible" implies that none of the �j are zero.

Bonus Problems

[Please give this directly to Professor Kazdan]

B-1 Let S := fu(x) 2 C2[0; �] with u(0) = u(�) = 0g and let Lu := �u00(x). Use the
inner product hu; vi = R �

0
u(x)v(x) dx .

a) If u and v are in S , show that hLu; vi = hu; Lvi . This shows that L is self-adjoint
on this space of functions. [Hint: Integrate by parts.]

Solution: Using integration by parts you obtain hLu; vi =
R �
0
u0v0 dx and

hv; Lui = hLu; vi = R �
0
u0v0 dx .

b) If u(x) 2 S , u 6� 0, is an eigenfunction of L , so Lu = �u for some constant � ,
show that � > 0. [Hint: Compute hLu; ui and integrate by parts.]

Solution: If � = 0 then u solves u00 = 0 and get u =2 S so we have a contradic-
tion. Hence � 6= 0. Now, �hu; ui = hLu; ui = R �

0
(u0)2 dx � 0 Hence � � 0. Thus

� > 0.

c) Find the eigenvalues �k and eigenfunctions uk(x) of L (remember to use the
boundary conditions u(0) = u(�) = 0).

Solution: For this part see to the notes:

http://hans.math.upenn.edu/�kazdan/312S13/notes/Lu=-DDu.pdf .

B-2 Let A : Rn ! R
k be a linear map that is onto but not one-to-one. Say X1 is a solution

of AX = Y . Is there a \best" possible solution? What can one say? Think about this
before reading the next paragraph.

a) Show that AA� is invertible so there is exactly one solution V of AA�V = Y .
Thus the vector X2 := A�V is also a solution of AX = Y .

Solution: Since A is onto we have that A� is one-to-one, namely kerA� = f0g
and hence that the square matrix AA� is invertible. [This is the same as Problem
11d) above.]

b) Show that if X1 is any solution of AX = Y , then X2 is closer to the origin, that
is, kX2k � kX1k . In other words, X2 is the solution that is closest to the origin.
[Hint: the general solution of AX = Y is X = X2 + Z where Z 2 kerA .]
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Solution: We have that X2 = A�V 2 imA� = (kerA)? and X1 = X2 + Z
for some Z 2 kerA , hence Z and X2 are orthogonal. Then by the Pythagorean
theorem we have that

kX1k2 = kX2 + Zk2 = kX2k2 + kZk2 � kX2k2:

[Last revised: March 25, 2014]
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