Math 312, Spring 2014 Jerry L. Kazdan

Problem Set 6
DUE: In class Thurs, March 6. Late papers will be accepted until 1:00 PM Friday.
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1. [BRETSCHER, SEC. 5.1 #26] Find the orthogonal projection Pg of #:= | 49 | into
49
2 3
the subspace S of R? spanned by #, := [ 3 | and @ := | —6
6 2

SOLUTION: We are fortunate that the vectors ¢, and ¥ are orthogonal. We want to
find constants a and b so that

Z = av + b + W0, (1)

where w0 is orthogonal to §. Then the desired projection will be Pg¥ = a¥’y + bia. To
find the scalars a and n, take the inner product of with ¢ and then ¥5 we find

(@, 6) =alBil”  and  (F, T) = bl
Using the particular vectors in this problem, ¢ = 11 and b = —1. Thus

19
Psi =119 — v = | 39
64

11
2. [BRETSCHER, SEC. 5.4 #2] Let A= (1 2|. Find a basis for ker A*.
1 3

Draw a sketch illustrating the formula (im A)1 = ker A* in this case.

SOLUTION: We need to solve A*# = 0, namely:
1+ xo+23=0, x1+2224+323=0

Hence we obtain that zo = —2x3 and z1 = z3 so ¢ := (1,—2,1) is a basis for ker A*.

Plane is im(A




3. [BRETSCHER, SEC. 5.4 #16] Let A : R*¥ — R” be an n x k matrix. Show that

rank A* = rank 4, that is, dim(image A*) = dim(image A)

SOLUTION: We will use the two formulas
(image A)" = ker A* and dim(ker A*) 4+ dim(image A*) = n
[or the equivalent formulas interchanging the roles of A and A*]. Since
dim(image A) 4 dim(image A)* = n,
the first formila implies
n — dim(image A) = dim(ker A*),
while the second implies
n — dim(image A*) = dim(ker A*)

The result is now clear.

4. [BRETSCHER, SEC. 5.2 #32] Find an orthonormal basis for the plane z1 +z2+z3 = 0.

SOLUTION: Pick any point in the plane, say @7 = (1,—1,0). This will be the first
vector in our orthogonal basis. We use the Gram-Schmidt process to extend this to an
orthogonal basis for the plane.

Pick any other point in the plane, say @ := (1,0 —1). Write it as @, = a¥; + 7, where
7 is perpendicular to ¢;. Note that, although unknown, Z will also be in the plane
since it will be a linear combination of ¥; and W, both of which are in the plane. As
usual, by taking the inner product of both sides of @, = a¥; + 7 with ¥, we find

oL . 1
a = (wy, v1) /|51 = 3
Thus
1/2
R
Z=w — -t = [1/2
2 -1

is in the plane and orthogonal to ¢;. The vectors @7 and Z are an orthogonal basis for
this plane. To get an orthonormal basis we just make these into unit vectors
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5. [BRETSCHER, SEC. 5.3 #10] Consider the space Po of real polynomials of degree at
most 2 with the inner product

1
(fi9)= 5/1f(t)g(t) dt.

Find an orthonormal basis for all the functions in Py that are orthogonal to f(t) =t.

SOLUTION: We have that {1,¢,#2} is a basis for P. The orthogonal complement of
t has dimension 2. Because ¢ is an odd polynomial and both 1 and #? are even, the
elements in Py that are orthogonal to ¢ are the polynomials of the form p(t) = a-1+bt2.
We want an orthonormal basis for this.

First an orthoginal basis. Let pi(¢) = 1. This will be the first element of our orthogonal
basis. For the second we write * = a - 1 + pa(t), where po(t) is orthogonal to pi(%).
As usual, take the inner product of both sides of this with p;(¢) to find (t2, 1) =
a(l, 1)+(p2, 1). Since ||1]| = 1 and we want po L 1, this means (t?, 1) = a||1||>+0 = a.

But
2 1 ! 2 1
-1

Thus a = 1/3 and hence py(t) =2 — 1/3.

To make p;, p2 into an orthonormal basis we compute

1 2
1 4
2 1 2
=1 22 dt=—.

An orthonormal basis of the polynomials in Py that are orthogonal to ¢ is thus

t? -1
er(t) =1,  eg(t) = ——2 = (32— 1).

/4745

6. [BRETSCHER, SEC. 5.3 #16] Consider the space P; with the inner product

1
(f. 9) :/0 f(t)g(t) dt.

a) Find an orthonormal basis for this space. [Suggestion: Let e;(f) = 1 and pick
e2(t) = a + bt to be orthogonal to e .]

SOLUTION: We let e1(t) =1 (it already has length 1). For ez to be orthogonal to
e1 we need ,ez(t) = ¢(t — 1/2) for some constant c¢. Since fol (t—1/2)%dt = 1/12,
then

ea(t) = V12(t — 1/2) = V/3(2¢ — 1).



b) Find the linear polynomial ¢g(¢) = a + bt that best approximates the polynomial
f(t) = t2. Thus, one wants to pick g(¢) so that ||f — g| is as small as possible.
[Question: In an inner product space V', if you have a subspace S C V and a
vector ¢ € V', how can you find the vector in S that is closest to 7]

SoLuTioN:  Use the orthogonal projection on S. Since (#2,1) = 1/3 and
(12, V3(2t — 1)) = Y2 then

g(t) = projsf(t) = Y (ei(t), f(t)eilt) = 1/3+ i\f@t —1)=-1/6+1.

7

0 if—n<z<—7/2

™

7. Let f(z):=41 if —7/2 <z < x/2 and define (f, g) = f(z)g(z) dz. Find the

—7

0 ifrn/2<z<m
Fourier Series of f(z).

SOLUTION: Using the formulas for the coefficients we have: ay = \/7/2 and for n > 1,
/2 0 if nis even,
CcoSNx 2 . .nw 9 .
= 7(1 = — ) = — lfn:1,5,9,...,
——== ifn=3,7,11,...
ny/m
Similarly, since sinnz is an odd function,
/2
b, = — sinnx dx = 0,

ﬁ —m/2

Hence
bl
cos3r cosbr cosTx

5 "5 T 7

f(x) :%4- 2 [cosx—

™

. [BRETSCHER, SEC. 5.1 #37] Consider a plane V in R with orthonormal basis i}
and 2. Let & be a vector in R?. Find a formula for the orthogonal reflection RZ of Z
across the plane V. Your answer will involve Py Z, the orthogonal projection of # into
the plane V. [Suggestion: Use that (I — Py)Z is the component of Z that is orthogonal
to V. In a reflection, this is the part of # that is flipped.]

SOLUTION:  The key is a picture (first try it in R? where V is a line through the
origin). Let PyZ be the orthogonal projection of # into the plane V. Then @ :=
Py & =& — PyZ is the projection of & orthogonal to V. From the picture, to get the
reflection, replace W by —&

Thus, since ¥ = Py¥ + @, then

e



W=X-EX X=RX+W

PX
Y

X=PX-W
-W R\ \Y;

In summary, orthogonal projections and reflections for a subspace V' are related by the
simple formula Ry = 2P, — 1.

Note that if you know an orthonormal basis for V' the orthogonal projection, Py,
is easy to compute All of this is very general. In this problem #; and s are an
orthonormal basis for the subspace V', so

Consequently,

. Let V be a linear space with an inner product and P : V — V a linear map. P is
called a projection if P2 =P. Let Q :=1— P.
a) Show that Q? = @, so Q is also a projection.
Show that the image of P is the kernel of ().
SOLUTION: Q?=1—-PI—IP+P?=]1-P-P+P=1-P=Q.
We need to show that im P C ker ) and ker ) C im P. Say z € im P, then z = Py
for some gy. Thus

(I-Px=Iz—Pr=1Ic—Py=Izr—Py=x—2=0.

Conversely, say y € ker @), then y = Iy = Py so y € im P.

b) A projection P is called an orthogonal projection if the image of P is orthogonal
to the kernel of P. If P = P*, show that P is an orthogonal projection.

SOLUTION: Let z € ker@Q = im P and y € ker P. Since z = Px and Py = 0,
then (z, y) = (Pz, y) = (z, P*y) = (z, Py) = 0.

c) Conversely, if P is an orthogonal projection, show that P = P*.

SoLuTION:  We will show that (Px, y) = (x, Py) for all z and y. Write z =
Pz 4+ (I — P)z = z1 + z2. Note that 21 € im (P) and z2 € ker (P). Similarly



write y = Py + (I — P)y = y1 + y2. By assumption the image and kernel of P
are orthogonal, so z; and y» are orthogonal, as are z9 and y;. The following
computation completes the proof.

(Pz, y) = (z1, y1 +y2) = (1, y1) and (z, Py) = (z1 + z2, 1) = (z1, Y1).

ALTERNATE: Since the image and kernel of P are orthogonal, then ((I—P)z, Py) =
0 for all £ and y. Thus,

(m,Py)z(Px,Py)z(x,P*Py)

for all  and y. This implies that P = P*P. Since P*P is self-adjoint, this shows
that P is self-adjoint.

10. Let A be a real matrix, not necessarily square.
a) If A is onto, show that A* is one-to-one.

SOLUTION: Since im A" = ker A*, thus ker A = 0.
b) If A is one-to-one, show that A* is onto.

SOLUTION: Similarly, im A** = ker A.

11. Let A be a real matrix, not necessarily square.
a) Show that both A*A and AA* are self-adjoint.
SoLuTION: Using (AB)* = B*A* and (A*)* = A, this is easy.

10 0Y. . L
01 0) is illuminating. Here

The example A := (
1 00 1 0

A*A=(0 1 0 and AAT = (0 1) .

0 00

b) Show that ker A = ker A*A. [HINT: Show separately that ker A C ker A*A and
ker A D ker A*A. The identity (¥, A*AZ) = (AZ, AZ) is useful.]

SOLUTION: If ¥ € ker A, then AZ =0 so A*AZ = A*0 = 0. Thus 7 € ker A*A.
In other words, ker A C ker A*A.

Conversely, if Z € ker A*A, then A*A¥ =0 so
0 = (%, A*AZ) = (AZ, AT) = || AZ|]>.

Consequently AZ = 0, that is, Z € ker A. This proves that ker A*A C ker A.
c) If A is one-to-one, show that A*A is invertible

SOLUTION: From part (b) the square matrix A*A is 1-1, hence it is invertible.



d) If A is onto, show that AA* is invertible.

SOLUTION: From exercise 10, part (a) we have that A* is 1-1. Therefore as in
part (¢), AA* is 1-1 so the square matrix AA* is invertible.

12. [This question is now a bonus question (see below).]

Quadratic Polynomials Using Inner Products

If A is a real symmetric matrix (so it is self-adjoint), then Q(¥) := (¥, AZ) is a quadratic
polynomial. Given a quadratic polynomial, it is easy to find the (unique) symmetric sym-
mentic matrix A. Here is an example. Say Q(Z) := 32? — 8129 — 523 To find A, note that
—8x1x0 = —4x1T9 — dx272 SO We can rewite () as

Q(Z) := 323 — 4z 119 — daow) — BTl
If we let

A= (_i :g) [Note A is a symmetric matrix],

then it is easy to verify that Q(Z) = (&, AZ). In the remaining problems we will use this
to help work with quadratic polynomials.

13. In each of these find a 3 x 3 symmetric matrix A so that Q(Z) = (Z, AZ).

a) Q%) := 3z% — 8z1w9 — 5a3 + 3.

3 -4 0
SoLuTiIoN: A=|-4 -5 0
0 0 1
b) Q(Z) := 32? — 8x112 — 533 — Tom3 + 23.
3 —4 0
SoLuTiION: A= |-4 -5 —1/2
0 -1/2 1
¢) Q(F) := 3x? — 8x129 — 53 — To73.
3 —4 0
SoLuTiION: A= |-4 -5 —1/2
0 -1/2 0

14. [LOWER ORDER TERMS AND COMPLETING THE SQUARE| Which is simpler:
z =%+ 425 — 2z +4 =y? 27
— 1 2 1 1'2—’_2 or Z—y1+4y2.

If we let y; =21 — 1 and yo = z2 + 1/2, they are essentially the same. All we did was
translate the origin to (1, —1/2).



The point of this problem is to generalize this to quadratic polynomials in several
variables. Let

Q(F) = Z ;5T T5 + 2 Z bix; + ¢
= (&, AZ) +2(b, ) + ¢

-

be a real quadratic polynomial so & = (x1,...,2y), b = (b1,...,b,) are real vectors
and A = (a;;) is a real symmetric n X n matrix.

In the case n = 1, Q(z) = az® + 2bx + ¢ which is clearly simpler in the special case
b = 0. In this case, if a # 0, by completing the square we find

Q(z) = a(x+b/a)® + ¢ — 20 /a = ay® + 1,

where we let y = x — b/a and v = ¢ — b?/a. Thus, by translating the origin: z =
y+b/a we can eliminate the linear term in the quadatratic polynomial — so it becomes
simpler.

a) Similarly, for any dimension n, if A is invertible, using the above as a model, show
there is a change of variables § == Z — ¢’ (this is a translation by the vector ¥') so
that in the new ¢ variables ) hasthe form

where v involves A, b, and ¢ — but no terms that are linear in ¢. [In the case
n = 1, which you should try first, this means using a change of variables y = x — v
to change the polynomial az? + 2bx + ¢ to the simpler ay? + v.]

SOLUTIONS: First the case n = 1 again. Then Q(z) = Az? + 2bz + ¢ so

Q(z) = Qy +v) =A(y +v)* +2b(y +v) +¢
=Ay? + (2Av + 2b)y + Av® 4 2bv + c.

To kill the linear term, pick v so that 2Av + 2b = 0, that is, v = —b/A. Then
Q(z) = Ay? + v, where

v =Ab?/A? - 2*/A+c= -V /A +c

Next, the case of arbitrary n. It should now feel routine. We are trying the change
of variables £ == ¢ — ¢ with the thought of picking ¥ to simplify the result. The
following should be a straightforward computation (the third line uses A = A*):

Q@) =Q(7+7) = (F+7, A(T+ D)) + (b, T+ 7) +c
=(y, AY) + (g, AV) + (¥, AY) + (¥, Av) +2 <*y*>+2< ) +ec
=(7, AJ) + (2AT + 2b, ) + (¥, AD) + 2(b, T) +



15. For # € R™ let Q(%¥) :=

The term that is linear in ¢ will vanish if we pick ¥ so that 2A7 + 2b = 0, that is,
= —A~'p. Then

QT) = (7, Aj) +~
where
= (A0, by — 2(b, A7'B) + ¢ = —(b, AT'B) + ¢
This agrees with what we found in the special case n = 1.
As an example, apply this to Q(Z) = 272 + 22129 + 312 — 4

—

SoLuTION: Here Q(%) = (Z, AZ) + 2(b, ) + ¢, where A = (2 1), b= ( 0 ),

10 3/2
and ¢ = —4. Thus A= = <(1) _12> s0 T=—A"1h= (3/:?)

—

AZ), where A is a real symmetric matrix. We say that A

(@,
is positive definite if Q(Z) > 0 for all & # 0, negative definite if Q(Z) < 0 for all £ # 0,
>0 fo

and indefinite if Q(Z) >

a)

r some Z but Q( 7) < 0 for some otherf.

In the special case n = 2 give (simple!) examples of matrices A that are positive
definite, negative definite, and indefinite.

SOLUTION: Several examples. Begin with the polynomial, not the matrix.
positive definite: 1f (#, AZ) = x? + z2 then A is the identity matrix I, and
(Z, AT) = 223 + 323 so A=(39).

negative definite: For (¥, AT) = —x% — 23, the matrix is —I while for (Z, AT) =
—2z2 — 323, the matrix is (> 9).
indefinite: For (&, AT) = 2?2 — 22 the matrix is (§ 9) while for (#, AZ) = —222 +

573 the matrix is (3 3).

NotTE: If (#, AT) = 323, the matrix is A := (3 9) is not positive definite, it is
positive semi-definite, that is, (¥, A¥) > 0 for all ¥ but (Z, AZ) = 0 for some
Z#0.

In the special case where A is an invertible diagonal matrix,

A1 O 0

0 Mg 0
A= . . s

: : 0

0 0 A

n

under what conditions is Q(Z) positive definite, negative definite, and indefinite?
[REMARK: We will see that the general case can always be reduced to this special
case where A is diagonal.]

SoLuTION: Key step: here

(Z, AT) = \a? 4 dozs + -+ + Apz2.



If welet ¥ = (0, 1,0,...,0), clearly (Z, AZ) = Ay so if A is positive definite, then
Ao > 0. Similarly, if A is positive definite, then all the ); are positive.
Conversely, if all the \; are positive, it is clear that A is positive definite.

By the same reasoning, A is negative definite if (and only if) all the A\; < 0, and
indefinite if at least one A; is positive and another is negative.

NOTE: the assumption “A is invertible” implies that none of the A; are zero.

Bonus Problems
[Please give this directly to Professor Kazdan]

B-1 Let S := {u(m) € 02[0 7r] with uw(0) = u(w) = 0} and let Lu := —u"(x). Use the
inner product (u, v) fo x)dx.

a)

c)

If 4w and v are in S, show that (Lu, v) = (u, Lv). This shows that L is self-adjoint
on this space of functions. [HINT: Integrate by parts.]

SOLUTION: Using integration by parts you obtain (Lu,v) = [/ u'v'dz and
(v, Lu) = (Lu, v) = [ o’

If u(z) € S, uw#0, is an elgenfunction of L, so Lu = Au for some constant A,
show that A > 0. [HINT: Compute (Lu, u) and integrate by parts.]

SOLUTION: If A =0 then u solves u” =0 and get U ¢ S so we have a contradic-
tion. Hence A # 0. Now, Au, u) = (Lu, u) = [, (u)*dz > 0 Hence A > 0. Thus
A>0.

Find the eigenvalues )\, and eigenfunctions wug(z) of L (remember to use the
boundary conditions u(0) = u(n) = 0).

SOLUTION: For this part see to the notes:

http://hans.math.upenn.edu/~kazdan/3125S13/notes/Lu=-DDu.pdf .

B-2 Let A:R™ — R* be a linear map that is onto but not one-to-one. Say X, is a solution
of AX =Y. Is there a “best” possible solution? What can one say? Think about this
before reading the next paragraph.

a)

Show that AA* is invertible so there is exactly one solution V of AA*V =Y.
Thus the vector X5 := A*V 1is also a solution of AX =Y.

SOLUTION: Since A is onto we have that A* is one-to-one, namely ker A* = {0}
and hence that the square matrix AA* is invertible. [This is the same as Problem
11d) above.]

Show that if X is any solution of AX =Y, then X5 is closer to the origin, that
is, [|X2|| < ||X1]]. In other words, X5 is the solution that is closest to the origin.
[HINT: the general solution of AX =Y is X = Xy + Z where Z € ker A]

10


http://hans.math.upenn.edu/~kazdan/312S13/notes/Lu=-DDu.pdf

SOLUTION: We have that Xy = A*V € im A* = (ker A)* and X; = Xy + Z
for some Z € ker A, hence Z and Xo are orthogonal. Then by the Pythagorean
theorem we have that

IX1)* = X2 + 27 = [1X2]1* + [ 2]* > [1X2]*.

[Last revised: March 25, 2014]
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