Problem Set 7

Due: In class Thurs, March 20. Late papers will be accepted until 1:00 PM Friday.

For the week after Spring Break, please read Chapter 6 on determinants and, as a review ofMath 240, Chapter 7.1 and 7.2.

1. For real $c>0, c \neq 1$, and distinct points \vec{p} and \vec{q} in \mathbb{R}^{n}, consider the points $\vec{x} \in \mathbb{R}^{n}$ that satisfy

$$
\|\vec{x}-\vec{p}\|=c\|\vec{x}-\vec{q}\| .
$$

Show that these points lie on some sphere: $\left\|\vec{x}-\vec{x}_{0}\right\|=r$, with center at \vec{x}_{0} and radius r. This problem is to find the center and radius of the sphere in terms of \vec{p}, \vec{q}, and c. What happens in the special case $c=1$?
2. [Bretscher, Sec. 5.5 \#24]. Using the inner product $\langle f, g\rangle:=\int_{0}^{1} f(x) g(x) d x$, for certain polynomials \mathbf{f}, \mathbf{g}, and \mathbf{h} say we are given the following table of inner products:

$\langle\rangle$,	\mathbf{f}	\mathbf{g}	\mathbf{h}
\mathbf{f}	4	0	8
\mathbf{g}	0	1	3
\mathbf{h}	8	3	50

For example, $\langle\mathbf{g}, \mathbf{h}\rangle=\langle\mathbf{h}, \mathbf{g}\rangle=3$. Let E be the span of \mathbf{f} and \mathbf{g}.
a) Compute $\langle\mathbf{f}, \mathbf{g}+\mathbf{h}\rangle$.
b) Compute $\|\mathbf{g}+\mathbf{h}\|$.
c) Find $\operatorname{proj}_{E} \mathbf{h}$. [Express your solution as linear combinations of \mathbf{f} and \mathbf{g}.]
d) Find an orthonormal basis of the span of \mathbf{f}, \mathbf{g}, and \mathbf{h} [Express your results as linear combinations of \mathbf{f}, \mathbf{g}, and \mathbf{h}.]
3. Lat $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Find the conditions on the coefficients a, b, c, and d so that A is an orthogonal matrix.
4. [See Homework 4, Problem 13] Say $X(t)$ is a solution of the differential equation $\frac{d X}{d t}=$ $A X$, where A is an anti-symmetric matrix. Show that $\|X(t)\|=$ constant. [REmark: A special case is that $X(t):=\binom{\cos t}{\sin t}$ satisfies $X^{\prime}=A X$ with $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ so this problem gives another proof that $\cos ^{2} t+\sin ^{2} t=1$.]
5. [Bretscher, Sec. 5.4 \#20] Using pencil and paper, find the least-squares solution to $A \vec{x}=\vec{b}$ where

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \vec{b}=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right) .
$$

6. Use the Method of Least Squares to find the parabola $y=a x^{2}+b$ that best fits the following data given by the following four points $\left(x_{j}, y_{j}\right), j=1, \ldots, 4$:

$$
(-2,4), \quad(-1,3), \quad(0,1), \quad(2,0) .
$$

Ideally, you'd like to pick the coefficients a and b so that the four equations $a x_{j}^{2}+b=y_{j}$, $j=1, \ldots, 4$ are all satisfied. Since this probably can't be done, one uses least squares to find the best possible a and b.
7. The water level in the North Sea is mainly determined by the so-called M2 tide, whose period is about 12 hours see [https://en.wikipedia.org/wiki/Tide]. The height $H(t)$ thus roughly has the form

$$
H(t)=c+a \sin (2 \pi t / 12)+b \cos (2 \pi t / 12)
$$

where time t is measured in hours (note $\sin (2 \pi t / 12$ and $\cos (2 \pi t / 12)$ are periodic with period 12 hours). Say one has the following measurements:

t (hours)	0	2	4	6	8	10
$H(t)$ (meters)	1.0	1.6	1.4	0.6	0.2	0.8

Use the method of least squares to find the constants a, b, and c in $H(t)$ for this data. [Although one can certainly solve this "by hand," you may prefer to use computer software.]
8. Some experimental data $\left(x_{i}, y_{i}\right)$ is believed to fit a curve of the form

$$
y=\frac{1+x}{a+b x^{2}},
$$

where the parameters a and b are to be determined from the data. The method of least squares does not apply directly to this since the parameters a and b do not appear linearly. Show how to find a modified equation to which the method of least squares does apply.
9. Plotting graphs This problem concerns the straight line in the plane that passes through the two points $(4,0)$ and $(0,2)$ (draw a sketch).
a) If the horizontal axis is x and the vertical axis y, what is the equation for y as a function of x ?
b) If the horizontal axis is $\log x$ and the vertical axis y, what is the equation for y as a function of x ?
c) If the horizontal axis is x and the vertical axis $\log y$, what is the equation for y as a function of x ?
d) If the horizontal axis is $\log x$ and the vertical axis $\log y$, what is the equation for y as a function of x ?
10. Say $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map with the property that $A^{2}-3 A+2 I=0$. If $\vec{v} \neq 0$ is an eigenvector of A with eigenvalue λ, that is, $A \vec{v}=\lambda \vec{v}$, what are the possible values of λ ?
11. Let R be a (real) 3×3 orthogonal matrix.
a) Show that the eigenvalues, λ, which may be complex, all have absolute value 1 .
b) If $\operatorname{det} R=1$ show that $\lambda=1$ is one of the eigenvalues of R and that if $R \neq I$, no other eigenvalue can be 1 .
For the remainder of this problem assume $\operatorname{det} R=1$ and $R \neq I$.
c) Let N be an eigenvector corresponding to $\lambda=1$ and let Q be the plane of all vectors orthogonal to N. Show that R maps Q to Q.
d) Why does this show that R is a rotation of the plane Q with N as the axis of rotation?
12. Let A be a 3×3 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and corresponding linearly independent eigenvectors V_{1}, V_{2}, V_{3} which we can therefore use as a basis.
a) If $X=a V_{1}+b V_{2}+c V_{3}$, compute $A X, A^{2} X$, and $A^{35} X$ in terms of $\lambda_{1}, \lambda_{2}, \lambda_{3}$, $V_{1}, V_{2}, V_{3}, a, b$ and c (only).
b) If $\lambda_{1}=1,\left|\lambda_{2}\right|<1$, and $\left|\lambda_{3}\right|<1$, compute $\lim _{k \rightarrow \infty} A^{k} X$. Explain your reasoning clearly.

Bonus Problem

[Please give this directly to Professor Kazdan]
B-1 Let $P_{1}, P_{2}, \ldots, P_{k}$ be k points (think of them as data) in \mathbb{R}^{3} and let \mathcal{S} be the plane

$$
\mathcal{S}:=\left\{X \in \mathbb{R}^{3}:\langle X, N\rangle=c\right\}
$$

where $N \neq 0$ is a unit vector normal to the plane and c is a real constant. [Note: This plane \mathcal{S} is only a subspace if $c=0$. The subspace parallel to this plane satisfies $\langle X, N\rangle=0$ so, writing more carefully, N is orthogonal to \mathcal{S} only when $c=0$. Indeed, a preliminary first step (see below), is to make a change of coordinates to reduce to this special case.]
This problem outlines how to find the plane that best approximates the data points in the sense that it minimizes the function

$$
Q(N, c):=\sum_{j=1}^{k} \operatorname{distance}\left(P_{j}, \mathcal{S}\right)^{2}
$$

Determining this plane means finding N and c.
a) Show that for a given point P, then

$$
\operatorname{distance}(P, \mathcal{S})=|\langle P-X, N\rangle|=|\langle P, N\rangle-c|,
$$

where X is any point in \mathcal{S}
b) First do the special case where the center of mass $\bar{P}:=\frac{1}{k} \sum_{j=1}^{k} P_{j}$ is at the origin, so $\bar{P}=0$. Show that for any P, then $\langle P, N\rangle^{2}=\left\langle N, P P^{*} N\right\rangle$. Here view P as a column vector so $P P^{*}$ is a 3×3 matrix.
Use this to observe that the desired plane \mathcal{S} is determined by letting N be an eigenvector of the matrix

$$
A:=\sum_{j=1}^{k} P_{j} P_{j}^{T}
$$

corresponding to it's lowest eigenvalue. What is c in this case?
c) Reduce the general case to the previous case by letting $V_{j}=P_{j}-\bar{P}$.
d) Find the equation of the line $a x+b y=c$ that, in the above sense, best fits the data points $(-1,3),(0,1),(1,-1),(2,-3)$.
e) Let $P_{j}:=\left(p_{j 1}, \ldots, p_{j 3}\right), j=1, \ldots, k$ be the coordinates of the $j^{\text {th }}$ data point and $Z_{\ell}:=\left(p_{1 \ell}, \ldots, p_{k \ell}\right), \ell=1, \ldots, 3$ be the vector of $\ell^{\text {th }}$ coordinates. If $a_{i j}$ is the ij element of A, show that $a_{i j}=\left\langle Z_{i}, Z_{j}\right\rangle$. Note that this exhibits A as a Gram matrix .
[Last revised: March 18, 2014]

