Problem Set 9

Due: In class Thursday, Thurs. April 10 Late papers will be accepted until 1:00 PM Friday.

For the coming week, please re-read Chapter 7 and Chapter 8.1-8.2.

1. Let $z=x+i y$ be a complex number. For which real numbers x, y is $\left|e^{z}\right|<1$?
2. This asks you to come up with four examples. In each case, find a real matrix (perhaps 2×2) that is:
a) Both invertible and diagonalizable.
b) Not invertible, but diagonalizable.
c) Not diagonalizable but is invertible.
d) Neither invertible nor diagonalizable.
3. Let A and B be $n \times n$ real positive definite matrices and let $C:=t A+(1-t) B$. If $0 \leq t \leq 1$, show that C is also positive definite. [This is simple. No "theorems" are needed.]
4. Let A be an $m \times n$ matrix, and suppose \vec{v} and \vec{w} are orthogonal eigenvectors of $A^{T} A$. Show that $A \vec{v}$ and $A \vec{w}$ are orthogonal.
5. [Bretscher, Sec. $7.3 \# 28$] Let $B:=\left(\begin{array}{cccc}k & 1 & 0 & 0 \\ 0 & k & 1 & 0 \\ 0 & 0 & k & 1 \\ 0 & 0 & 0 & k\end{array}\right)$ where k is an arbitrary constant. Find the eigenvalue(s) of B and determine both their algebraic and geometric multiplicities. [Note: First try the analogous 2×2 case.]
6. [Bretscher, Sec. 8.1 \#24] Find an orthonormal eigenbasis for $\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$.
7. [Bretscher, Sec. $8.1 \# 38$] Let A be a symmetric 2×2 matrix with eigenvalues -2 and 3 and $u \in \mathbb{R}^{2}$ any unit vector. What are the possible values of $\langle u, A u\rangle$? Illustrate your answer in terms of the unit circle and its image under A.
8. [Bretscher, Sec. $7.6 \# 18]$ If $\vec{x}(t+1)=A \vec{x}(t)$, where $A:=\left(\begin{array}{cc}-0.8 & 0.6 \\ -0 / 8 & -0.8\end{array}\right)$ and $\vec{x}(0)=\binom{0}{1}$, find a real closed formula for the trajectory $\vec{x}(t)$. Also, draw a rough sketch.
9. If $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$, solve $\frac{d \vec{x}}{d t}=A \vec{x}$ with initial condition $\vec{x}(0)=\binom{1}{0}$.
10. [Bretscher, Sec. 7.5 \#24] Find all the eigenvalues of $\left(\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & -7 & 3\end{array}\right)$.
11. If a real matrix A can be diagonalized by an orthogonal matrix, show A is symmetric.
12. Of the following four matrices, which can be orthogonally diagonalized; which can be diagonalized (but not orthogonally); and which cannot be diagonalized at all. Identify these - fully explaining your reasoning.

$$
A=\left(\begin{array}{ccc}
0 & 3 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 3 & 1 \\
3 & 0 & 2 \\
1 & 2 & 0
\end{array}\right), \quad C=\left(\begin{array}{lll}
3 & 1 & 3 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right), \quad D=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right) .
$$

13. [Bretscher, Sec. 8.2 \#26] Consider the quadratic polynomial $Q(\vec{x}):=\langle\vec{x}, A \vec{x}\rangle$, where A is a real $n \times n$ symmetric matrix. "If for some vector $\vec{v} \neq 0$ we know that $Q(\vec{v})=0$, then A cannot be invertible." Proof or counterexample.
14. [Bretscher, Sec. $7.5 \# 14]$ Let $A=\left(\begin{array}{ll}1 & -2 \\ 1 & -1\end{array}\right)$. Find an invertible matrix S so that $S^{-1} A S=\left(\begin{array}{rr}a & -b \\ b & a\end{array}\right)$.
15. Let A be an $n \times n$ matrix that commutes with all $n \times n$ matrices, so $A B=B A$ for all matrices B. Show that $A=c I$ for some scalar c. [Suggestion: Let \vec{v} be an eigenvector of A with eigenvalue λ and use Homework Set $2 \# 16 \mathrm{c}]$.

Bonus Problems

[Please give this directly to Professor Kazdan]
B-1 Let A be an $n \times n$ matrix all of whose elements are 1 and let $L:=I+A$.
a) Why is L invertible?
b) Find and explicit formula for L^{-1}. [Suggestion: Let \vec{v} be a column vector of all 1 's and note that \vec{v} is a basis for the image of A. Thus $A \vec{x}=c \vec{v}$ for some scalar c that depends on \vec{x}. But if $L \vec{x}=\vec{y}$, then $\vec{x}=\vec{y}-A \vec{x}=\vec{y}-c \vec{v}$ so all you need to do is find the scalar c.]
[Last revised: May 4, 2014]

