Some Classical Inequalities

For all of these inequalities there are many methods. Weaysampling.
1. ARITHMETIC-GEOMETRIC MEAN INEQUALITY If {b;} > 0, prove the following —
and decide when equality holds.

by +bp+ -+ + by
. .

(bghy--- b)Y/ < (N

Solution: Here are two approaches. Note that equality holds onlyl ithal bj’s are
equal.

METHOD 1. The most naive approach is probably by inductionnonThe assertion
is clearly true whemn =1. LetB= (by+---+b,)/n. Say the desired inequality
biby---by, < B" holds for a certaim (our induction hypothesis). Using this we find
that

(b1by -+ by )Y/ < (B 4]/ MY, @)
so we will be done if we can show that
nB+b
(Bnbn+1)1/(n+l) < T;-Jrl (3)

(one can interpret this as reducing (1) fos- 1 terms to the special case whbpn=
--- = by = B). At this point, we could stop since this inequality is a specase of
Problem #2 below where=B, t = b1, andc=n/(n+1). Instead, we proceed
directly.

Divide both sides of (3) by to get the equivalent

bn_|_1 1/(n+1) < n n 1 bI’H—l (4)
B “n+l1 n+1\ B /)’

To simplify, let X := bn,1/B, so we need to show thad/("1) < -1+ Ly for all
x > 0 [this is equation (7) witttc = n/(n+1)]. Since | don't like roots, lek := y*1,
After some algebra we must show that

ny—(n—1) <y" (5)

Using indection om, the casen = 0 is obvious. Thus, assuming (5) we need to show

that
(n+1y—n<y™t  forall y>o. (6)
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Using (5) this is equivalent tg — 1 < y™1 —y" = (y— 1)y", which is obvious if one
separately considers the cases 1 and O< y < 1. Equality holds only ify =1, that
is, if B=bp.1 as claimed.

METHOD 2. See Hardy'®ure Mathematics, p. 34.

. Let 0< c < 1. Show thats’t'~¢ < cs+ (1 —c)t forall s;t >0, s#t (if s=t, then
this becomes an equality).

Solution: Dividing both sides bys, this inequality is equivalent to
sl Ccct(1-0t/s,  thatis xPC<c+(1-c)x 7)

where O< x=t/s#1.

METHOD 1. The function f(x) := x}~¢ is concave becausé&’(x) < 0. This, the
curve lies below its tangent line at= 1. The equation of this tangent line ys=
1+(1—c)(x—1) =c+(1—c)x. Done.

METHOD 2. (very similar) By the mean value theorem appliedf{x) := x' ¢, we
have for some between 1 anc

XFC_1=f(x)—f(1)=f'(2)(x—1) = (1—c)Z °(x—1) < (1—c)x ¢(x—1),
where in the last inequality one considers the casesl andx < 1 separately.

METHOD 3. By elementary calculus, fa> 0, s> 0, the functiond(s) := sfa® 1 —cs
has its maximum as = a. Thus,s*a® ! —cs< (1—c)a, unlesss = a.

METHOD 4. Lets:=xP, t:=y4, c:=1/p and apply Problem #3 below.

. 11 xP oy
. HOLDER'S INEQUALITY Let p,q> 1 with Ii_3+a = 1. Show thatxy < F-i—a for
all x,y> 0.

Solution: METHOD 1. Lets:=xP, t:=y4, c:=1/p and apply Problem #2 above.

METHOD 2. (similar to #48 method 1 ). Define andv by x := €¥/P andy := €"/9,
Sinceh(z) := €* is convex, therh(Au+ (1 —A)v) < Ah(u) + (1 —A)h(v) for any 0<
A<1.IfweletA:=1/p,then I/g= 1— A so this gives the desired inequality.

METHOD 3. By elementary calculus, fax> 0 andx > 0 the maximum ofg(x) :=
ax—xP/p occurs atx = a%/(P-Y | Thusax < xP/p+ad/q.
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METHOD 4. We'll show that on the satv = 1 one hasf (u,v) := ”—; +"aq > 1. Since
on the constraintiv = 1 the functionf(u,v) blows up asu or v tend to infinity, we
know theree is a global min at a finite point.

To find it we use Lagrange multipliers and conside(u,v) := f(u,v) + A(uv—1).
Then the conditions & F, = uP~1 4+ Av and 0= F, = V91 4+ \u along with the con-
straintuv = 1 imply (after a calculation) that=v= 1. Since there is only one critical
point, this must be the global minimuni(u,v) > f(1,1) = 1.

The substitutiona® = X, A = L that is, u = ﬁ—;; v="" then give the desired

. ) Xy T Xy X/
inequality.



