
Some Classical Inequalities

For all of these inequalities there are many methods. We givea sampling.

1. ARITHMETIC-GEOMETRIC MEAN INEQUALITY If {b j } > 0, prove the following –
and decide when equality holds.

(b1b2 · · ·bn)
1/n ≤

b1 +b2 + · · ·+bn

n
. (1)

Solution: Here are two approaches. Note that equality holds only if all the b j ’s are
equal.

METHOD 1. The most naive approach is probably by induction onn . The assertion
is clearly true whenn = 1. Let B = (b1 + · · ·+ bn)/n . Say the desired inequality
b1b2 · · ·bn ≤ Bn holds for a certainn (our induction hypothesis). Using this we find
that

(b1b2 · · ·bn+1)
1/(n+1) ≤ [Bnbn+1]

1/(n+1), (2)

so we will be done if we can show that

(Bnbn+1)
1/(n+1) ≤

nB+bn+1

n+1
(3)

(one can interpret this as reducing (1) forn + 1 terms to the special case whenb1 =
· · · = bn = B). At this point, we could stop since this inequality is a special case of
Problem #2 below wheres = B , t = bn+1, and c = n/(n + 1). Instead, we proceed
directly.

Divide both sides of (3) byB to get the equivalent

(

bn+1

B

)1/(n+1)

≤
n

n+1
+

1
n+1

(

bn+1

B

)

. (4)

To simplify, let x := bn+1/B , so we need to show thatx1/(n+1) ≤ n
n+1 + 1

n+1x for all
x > 0 [this is equation (7) withc = n/(n+1)]. Since I don’t like roots, letx := yn+1.
After some algebra we must show that

ny− (n−1) ≤ yn. (5)

Using indection onn , the casen = 0 is obvious. Thus, assuming (5) we need to show
that

(n+1)y−n ≤ yn+1 for all y > 0. (6)
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Using (5) this is equivalent toy−1≤ yn+1− yn = (y−1)yn , which is obvious if one
separately considers the casesy ≥ 1 and 0< y < 1. Equality holds only ify = 1, that
is, if B = bn+1 as claimed.

METHOD 2. See Hardy’sPure Mathematics, p. 34.

2. Let 0< c < 1. Show thatsct1−c < cs +(1− c)t for all s, t > 0, s 6= t (if s = t , then
this becomes an equality).

Solution: Dividing both sides bys , this inequality is equivalent to

sc−1t1−c < c+(1− c)t/s, that is x1−c < c+(1− c)x, (7)

where 0< x = t/s 6= 1.

METHOD 1. The function f (x) := x1−c is concave becausef ′′(x) < 0. This, the
curve lies below its tangent line atx = 1. The equation of this tangent line isy =
1+(1− c)(x−1) = c+(1− c)x . Done.

METHOD 2. (very similar) By the mean value theorem applied tof (x) := x1−c , we
have for somez between 1 andx

x1−c −1 = f (x)− f (1) = f ′(z)(x−1) = (1− c)z−c(x−1) < (1− c)x−c(x−1),

where in the last inequality one considers the casesx > 1 andx < 1 separately.

METHOD 3. By elementary calculus, fora > 0, s ≥ 0, the functionϕ(s) := scac−1−cs
has its maximum ats = a . Thus,scac−1− cs < (1− c)a , unlesss = a .

METHOD 4. Let s := xp , t := yq , c := 1/p and apply Problem #3 below.

3. HÖLDER’ S INEQUALITY Let p, q ≥ 1 with
1
p

+
1
q

= 1. Show thatxy ≤
xp

p
+

yq

q
for

all x, y > 0.

Solution: METHOD 1. Let s := xp , t := yq , c := 1/p and apply Problem #2 above.

METHOD 2. (similar to #48 method 1 ). Defineu and v by x := eu/p and y := ev/q .
Sinceh(z) := ez is convex, thenh(λu +(1−λ)v) ≤ λh(u)+ (1−λ)h(v) for any 0≤
λ ≤ 1. If we let λ := 1/p , then 1/q = 1−λ so this gives the desired inequality.

METHOD 3. By elementary calculus, fora > 0 andx ≥ 0 the maximum ofg(x) :=
ax− xp/p occurs atx = a1/(p−1) . Thusax ≤ xp/p+aq/q .
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METHOD 4. We’ll show that on the setuv = 1 one hasf (u,v) := up

p + vq

q ≥ 1. Since
on the constraintuv = 1 the function f (u,v) blows up asu or v tend to infinity, we
know theree is a global min at a finite point.

To find it we use Lagrange multipliers and considerF(u,v) := f (u,v) + λ(uv− 1).
Then the conditions 0= Fu = up−1 + λv and 0= Fv = vq−1 + λu along with the con-
straintuv = 1 imply (after a calculation) thatu = v = 1. Since there is only one critical
point, this must be the global minimum:f (u,v) ≥ f (1,1) = 1.

The substitutionsup = xp

xy , vq = yq

xy , that is, u = x1/q

y1/p , v = y1/p

x1/q then give the desired
inequality.
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