Some Classical Inequalities

For all of these inequalities there are many methods. We give a sampling.

1. ARITHMETIC-GEOMETRIC MEAN INEQUALITY If $\left\{b_{j}\right\}>0$, prove the following and decide when equality holds.

$$
\begin{equation*}
\left(b_{1} b_{2} \cdots b_{n}\right)^{1 / n} \leq \frac{b_{1}+b_{2}+\cdots+b_{n}}{n} \tag{1}
\end{equation*}
$$

Solution: Here are two approaches. Note that equality holds only if all the b_{j} 's are equal.
METHOD 1. The most naive approach is probably by induction on n. The assertion is clearly true when $n=1$. Let $B=\left(b_{1}+\cdots+b_{n}\right) / n$. Say the desired inequality $b_{1} b_{2} \cdots b_{n} \leq B^{n}$ holds for a certain n (our induction hypothesis). Using this we find that

$$
\begin{equation*}
\left(b_{1} b_{2} \cdots b_{n+1}\right)^{1 /(n+1)} \leq\left[B^{n} b_{n+1}\right]^{1 /(n+1)} \tag{2}
\end{equation*}
$$

so we will be done if we can show that

$$
\begin{equation*}
\left(B^{n} b_{n+1}\right)^{1 /(n+1)} \leq \frac{n B+b_{n+1}}{n+1} \tag{3}
\end{equation*}
$$

(one can interpret this as reducing (1) for $n+1$ terms to the special case when $b_{1}=$ $\cdots=b_{n}=B$). At this point, we could stop since this inequality is a special case of Problem \#2 below where $s=B, t=b_{n+1}$, and $c=n /(n+1)$. Instead, we proceed directly.
Divide both sides of (3) by B to get the equivalent

$$
\begin{equation*}
\left(\frac{b_{n+1}}{B}\right)^{1 /(n+1)} \leq \frac{n}{n+1}+\frac{1}{n+1}\left(\frac{b_{n+1}}{B}\right) \tag{4}
\end{equation*}
$$

To simplify, let $x:=b_{n+1} / B$, so we need to show that $x^{1 /(n+1)} \leq \frac{n}{n+1}+\frac{1}{n+1} x$ for all $x>0$ [this is equation (7) with $c=n /(n+1)]$. Since I don't like roots, let $x:=y^{n+1}$. After some algebra we must show that

$$
\begin{equation*}
n y-(n-1) \leq y^{n} . \tag{5}
\end{equation*}
$$

Using indection on n, the case $n=0$ is obvious. Thus, assuming (5) we need to show that

$$
\begin{equation*}
(n+1) y-n \leq y^{n+1} \quad \text { for all } \quad y>0 . \tag{6}
\end{equation*}
$$

Using (5) this is equivalent to $y-1 \leq y^{n+1}-y^{n}=(y-1) y^{n}$, which is obvious if one separately considers the cases $y \geq 1$ and $0<y<1$. Equality holds only if $y=1$, that is, if $B=b_{n+1}$ as claimed.
method 2. See Hardy's Pure Mathematics, p. 34.
2. Let $0<c<1$. Show that $s^{c} t^{1-c}<c s+(1-c) t$ for all $s, t>0, s \neq t$ (if $s=t$, then this becomes an equality).

Solution: Dividing both sides by s, this inequality is equivalent to

$$
\begin{equation*}
s^{c-1} t^{1-c}<c+(1-c) t / s, \quad \text { that is } \quad x^{1-c}<c+(1-c) x, \tag{7}
\end{equation*}
$$

where $0<x=t / s \neq 1$.
METHOD 1. The function $f(x):=x^{1-c}$ is concave because $f^{\prime \prime}(x)<0$. This, the curve lies below its tangent line at $x=1$. The equation of this tangent line is $y=$ $1+(1-c)(x-1)=c+(1-c) x$. Done.

METHOD 2. (very similar) By the mean value theorem applied to $f(x):=x^{1-c}$, we have for some z between 1 and x

$$
x^{1-c}-1=f(x)-f(1)=f^{\prime}(z)(x-1)=(1-c) z^{-c}(x-1)<(1-c) x^{-c}(x-1)
$$

where in the last inequality one considers the cases $x>1$ and $x<1$ separately.
METHOD 3. By elementary calculus, for $a>0, s \geq 0$, the function $\varphi(s):=s^{c} a^{c-1}-c s$ has its maximum at $s=a$. Thus, $s^{c} a^{c-1}-c s<(1-c) a$, unless $s=a$.

METHOD 4. Let $s:=x^{p}, t:=y^{q}, c:=1 / p$ and apply Problem \#3 below.
3. HÖLDER'S INEQUALITY Let $p, q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$. Show that $x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}$ for all $x, y>0$.

Solution: METHOD 1. Let $s:=x^{p}, t:=y^{q}, c:=1 / p$ and apply Problem \#2 above.
METHOD 2. (similar to \#48 method 1). Define u and v by $x:=e^{u / p}$ and $y:=e^{v / q}$. Since $h(z):=e^{z}$ is convex, then $h(\lambda u+(1-\lambda) v) \leq \lambda h(u)+(1-\lambda) h(v)$ for any $0 \leq$ $\lambda \leq 1$. If we let $\lambda:=1 / p$, then $1 / q=1-\lambda$ so this gives the desired inequality.

METHOD 3. By elementary calculus, for $a>0$ and $x \geq 0$ the maximum of $g(x):=$ $a x-x^{p} / p$ occurs at $x=a^{1 /(p-1)}$. Thus $a x \leq x^{p} / p+a^{q} / q$.

METHOD 4. We'll show that on the set $u v=1$ one has $f(u, v):=\frac{u^{p}}{p}+\frac{v^{q}}{q} \geq 1$. Since on the constraint $u v=1$ the function $f(u, v)$ blows up as u or v tend to infinity, we know theree is a global min at a finite point.

To find it we use Lagrange multipliers and consider $F(u, v):=f(u, v)+\lambda(u v-1)$. Then the conditions $0=F_{u}=u^{p-1}+\lambda v$ and $0=F_{v}=v^{q-1}+\lambda u$ along with the constraint $u v=1$ imply (after a calculation) that $u=v=1$. Since there is only one critical point, this must be the global minimum: $f(u, v) \geq f(1,1)=1$.
The substitutions $u^{p}=\frac{x^{p}}{x y}, v^{q}=\frac{y^{q}}{x y}$, that is, $u=\frac{x^{1 / q}}{y^{1 / p}}, v=\frac{y^{1 / p}}{x^{1 / q}}$ then give the desired inequality.

