A Tridiagonal Matrix

We investigate the simple $n \times n$ real tridiagonal matrix:

$$
M=\left(\begin{array}{ccccccc}
\alpha & \beta & 0 & \ldots & 0 & 0 & 0 \\
\beta & \alpha & \beta & \ldots & 0 & 0 & 0 \\
0 & \beta & \alpha & \ldots & 0 & 0 & 0 \\
& \vdots & & \ddots & & \vdots & \\
0 & 0 & 0 & \ldots & \alpha & \beta & 0 \\
0 & 0 & 0 & \ldots & \beta & \alpha & \beta \\
0 & 0 & 0 & \ldots & 0 & \beta & \alpha
\end{array}\right)=\alpha I+\beta\left(\begin{array}{ccccccc}
0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
1 & 0 & 1 & \ldots & 0 & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
& \vdots & & \ddots & & \vdots & \\
0 & 0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & 0 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right)=\alpha I+\beta T,
$$

where T is defined by the preceding formula. This matrix arises in many applications, such as n coupled harmonic oscillators and solving the Laplace equation numerically. Clearly M and T have the same eigenvectors and their respective eigenvalues are related by $\mu=$ $\alpha+\beta \lambda$. Thus, to understand M it is sufficient to work with the simpler matrix T.

Eigenvalues and Eigenvectors of T

Usually one first finds the eigenvalues and then the eigenvectors of a matrix. For T, it is a bit simpler first to find the eigenvectors. Let λ be an eigenvalue (necessarily real) and $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a corresponding eigenvector. It will be convenient to write $\lambda=2 c$. Then

$$
\begin{align*}
0=(T-\lambda I) V & =\left(\begin{array}{ccccccc}
-2 c & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & -2 c & 1 & 0 & \ldots & 0 & 0 \\
0 & 1 & -2 c & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & & \ddots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -2 c & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & -2 c & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & -2 c
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n-2} \\
v_{n-1} \\
v_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
-2 c v_{1}+v_{2} \\
v_{1}-2 c v_{2}+v_{3} \\
\vdots \\
v_{k-1}-2 c v_{k}+v_{k+1} \\
\vdots \\
v_{n-2}-2 c v_{n-1}+v_{n} \\
v_{n-1}-2 c v_{n}
\end{array}\right) \tag{1}
\end{align*}
$$

Except for the first and last equation, these have the form

$$
\begin{equation*}
v_{k-1}-2 c v_{k}+v_{k+1}=0 \tag{2}
\end{equation*}
$$

We can also bring the first and last equations into this same form by introducing new artificial variables v_{0} and v_{n+1}, setting their values as zero: $v_{0}=0, v_{n+1}=0$.

The result (2) is a second order linear difference equation with constant coefficients along with the boundary conditions $v_{0}=0$, and $v_{n+1}=0$. As usual for such equations one seeks a solution with the form $v_{k}=r^{k}$. Equation (2) then gives $1-2 c r+r^{2}=0$ whose roots are

$$
r_{ \pm}=c \pm \sqrt{c^{2}-1}
$$

Note also

$$
\begin{equation*}
2 c=r+r^{-1} \quad \text { and } \quad r_{+} r_{-}=1 \tag{3}
\end{equation*}
$$

Case 1: $c \neq \pm 1$. In this case the two roots $r_{ \pm}$are distinct. Let $r:=r_{+}=c+\sqrt{c^{2}-1}$. Since $r_{-}=c-\sqrt{c^{2}-1}=1 / r$, we deduce that the general solution of (1) is

$$
\begin{equation*}
v_{k}=A r^{k}+B r^{-k}, \quad k=2, \ldots, n-1 \tag{4}
\end{equation*}
$$

for some constants A and B which.
The first boundary condition, $v_{0}=0$, gives $A+B=0$, so

$$
\begin{equation*}
v_{k}=A\left(r^{k}-r^{-k}\right), \quad k=1, \ldots, n-1 . \tag{5}
\end{equation*}
$$

Since for a non-trivial solution we need $A \neq 0$, the second boundary condition, $v_{n+1}=0$, implies

$$
r^{n+1}-r^{-(n+1)}=0, \quad \text { so } \quad r^{2(n+1)}=1
$$

In particular, $|r|=1$. Using (3), this gives $2|c| \leq|r|+|r|^{-1}=2$. Thus $|c| \leq 1$. In fact, $|c|<1$ because we are assuming that $c \neq \pm 1$.
Case 2: $c= \pm 1$. Then $r=c$ and the general solution of (1) is now

$$
v_{k}=(A+B k) c^{k} .
$$

The boundary condition $v_{0}=0$ implies that $A=0$. The other boundary condition then gives $0=v_{n+1}=B(n+1) c^{n+1}$. This is satisfied only in the trivial case $B=0$. Consequently the equations (1) have no non-trivial solution for $c= \pm 1$.

It remains to rewrite our results in a simpler way. We are in Case 1 so $|r|=1$. Thus $r=e^{i \theta}, c=\cos \theta$, and $1=r^{2(n+1)}=e^{2 i(n+1) \theta}$. Consequently $2(n+1) \theta=2 k \pi$ for some $1 \leq k \leq n$ (we exclude $k=0$ and $k=n+1$ because we know that $c \neq \pm 1$, so $r \neq \pm 1$). Normalizing the eigenvectors V by the choice $A=1 / 2 i$, we summarize as follows:

Theorem 1 The $n \times n$ matrix T has the eigenvalues

$$
\lambda_{k}=2 c=2 \cos \theta=2 \cos \frac{k \pi}{n+1}, \quad 1 \leq k \leq n
$$

and corresponding eigenvectors

$$
V_{k}=\left(\sin \frac{k \pi}{n+1}, \sin \frac{2 k \pi}{n+1}, \ldots, \sin \frac{n k \pi}{n+1}\right) .
$$

REMARK 1. If $n=2 k+1$ is odd, then the middle eigenvalue is zero because $(k+1) \pi /(n+$ 1) $=(k+1) \pi / 2(k+1)=\pi / 2$.

REMARK 2. Since $2 a b=a^{2}+b^{2}-(a-b)^{2} \leq a^{2}+b^{2}$ with equality only if $a=b$, we see that for any $x \in \mathbb{R}^{n}$

$$
\langle x, T x\rangle=2\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}\right) \leq x_{1}^{2}+2\left(x_{2}^{2}+\cdots+x_{n-1}^{2}\right)+x_{n}^{2} \leq 2\|x\|^{2}
$$

with equality only if $x=0$. Similarly $\langle x, T x\rangle \geq-2\|x\|^{2}$. Thus, the eigenvalues of T are in the interval $-2<\lambda<2$. Although we obtained more precise information above, it is useful to observe that we could have deduced this so easily.
REMARK 3. Gershgorin's circle theorem is also a simple way to get information about the eigenvalues of a square (complex) matrix $A=\left(a_{i j}\right)$. Let D_{i} be the disk whose center is at $a_{i i}$ and radius is $R_{i}=\sum_{j \neq i}\left|a_{i j}\right|$, so

$$
\left|\lambda-a_{j j}\right| \leq R_{j}
$$

These are the Gershgorin disks.
Theorem 2 (Gershgorin) Each eigenvalues of A lies in at least one of these Gershgorin discs.

Proof: Say $A x=\lambda x$ and say $\left|x_{i}\right|=\max _{j}\left|x_{j}\right|$. The $i^{\text {th }}$ component of $A x=\lambda x$ is

$$
\left(\lambda-a_{i i}\right) x_{i}=\sum_{j \neq i} a_{i j} x_{j}
$$

so

$$
\left|\left(\lambda-a_{i i}\right) x_{i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\left|x_{j}\right| \leq R_{i}\left|x_{i}\right| .
$$

That is, $\left|\lambda-a_{i i}\right| \leq R_{i}$, as claimed.
By Gershgorin's theorem, we observed immediately that all of the eigenvalues of T satisfy $|\lambda| \leq 2$.

Determinant of $T-\lambda I$

We use recursion on n, the size of the $n \times n$ matrix T. It will be convenient to build on (1) and let $D_{n}=\operatorname{det}(T-\lambda I)$. As before, let $\lambda=2 c$. Then, expanding by minors using the first column of (1) we obtain the formula

$$
\begin{equation*}
D_{n}=-2 c D_{n-1}-D_{n-2} \quad n=3,4, \ldots \tag{6}
\end{equation*}
$$

Since $D_{1}=-2 c$ and $D_{2}=4 c^{2}-1$, we can use (6) to define $D_{0}:=1$. The relation (6) is, except for the sign of c, is identical to (2). The solution for $c \neq \pm 1$ is thus

$$
\begin{equation*}
D_{k}=A s^{k}+B s^{-k}, \quad k=0,1, \ldots \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
-2 c=s+s^{-1} \quad \text { and } \quad s=-c+\sqrt{c^{2}-1} \tag{8}
\end{equation*}
$$

This time we determine the constants A, B from the initial conditions $D_{0}=1$ and $D_{1}=$ $-2 c$. The result is

$$
D_{k}= \begin{cases}\frac{1}{2 \sqrt{c^{2}-1}}\left(s^{k+1}-s^{-(k+1)}\right) & \text { if } \quad c \neq \pm 1 \tag{9}\\ (-c)^{k}(k+1) & \text { if } \quad c= \pm 1\end{cases}
$$

For many purposes it is useful to rewrite this.
Case 1: $|c|<1$. Then $s=-c+i \sqrt{1-c^{2}}$ has $|s|=1$ so $s=e^{i \alpha}$ and $c=-\cos \alpha$ for some $0<\alpha<\pi$. Therefore from (9),

$$
\begin{equation*}
D_{k}=\frac{\sin (k+1) \alpha}{\sin \alpha} \tag{10}
\end{equation*}
$$

Case 2: $c>1$. Write $c=\cosh \beta$ for some $\beta>0$. Since $-e^{\beta}-e^{-\beta}=-2 c=s+s^{-1}$, write $s=-e^{\beta}$. Then from (9),

$$
\begin{equation*}
D_{k}=(-1)^{k} \frac{\sinh (k+1) \beta}{\sinh \beta} \tag{11}
\end{equation*}
$$

where we chose the sign in $\sqrt{c^{2}-1}=-\sinh \beta$ so that $D_{0}=1$.
Case 3: $c<-1$. Write $c=-\cosh \beta$ for some $\beta>0$. Since $e^{t}+e^{-t}=-2 c=s+s^{-1}$, write $s=e^{\beta}$. Then from (9),

$$
\begin{equation*}
D_{k}=\frac{\sinh (k+1) \beta}{\sinh \beta} \tag{12}
\end{equation*}
$$

where we chose the sign in $\sqrt{c^{2}-1}=+\sinh t$ so that $D_{0}=1$.
Note that as $t \rightarrow 0$ in (10)-(12), that is, as $c \rightarrow \pm 1$. these formulas agree with the case $c= \pm 1$ in (9).

A Small Generalization

This procedure can be extended to the slightly more general tridiagonal matrices having different elements in the upper-left and lower-right entries

$$
M=\left(\begin{array}{ccccccc}
\gamma & \beta & 0 & 0 & \ldots & 0 & 0 \\
\beta & \alpha & \beta & 0 & \ldots & 0 & 0 \\
0 & \beta & \alpha & \beta & \ldots & 0 & 0 \\
\vdots & \vdots & & \ddots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \alpha & \beta & 0 \\
0 & 0 & 0 & \ldots & \beta & \alpha & \beta \\
0 & 0 & 0 & \ldots & 0 & \beta & \delta
\end{array}\right)=\alpha I+\beta\left(\begin{array}{ccccccc}
a & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & & \ddots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & 0 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & b
\end{array}\right)=\alpha I+\beta T,
$$

where $a=(\gamma-\alpha) / \beta$ and $b=(\delta-\alpha) / \beta$. These arises in various applications.
As in equation (1) above, we need to find the eigenvalues $\lambda=2 c$ and eigenvectors v of T, so

$$
\begin{align*}
0=(T-\lambda I) v & =\left(\begin{array}{ccccccc}
a-2 c & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & -2 c & 1 & 0 & \ldots & 0 & 0 \\
0 & 1 & -2 c & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & & \ddots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & -2 c & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & -2 c & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & b-2 c
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n-2} \\
v_{n-1} \\
v_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
(a-2 c) v_{1}+v_{2} \\
v_{1}-2 c v_{2}+v_{3} \\
\vdots \\
v_{k-1}-2 c v_{k}+v_{k+1} \\
\vdots \\
v_{n-2}-2 c v_{n-1}+v_{n} \\
v_{n-1}+(b-2 c) v_{n}
\end{array}\right) . \tag{13}
\end{align*}
$$

Here and throughout our discussion a and b will be real parameters.
As before, we introduce new variables v_{0} and v_{n+1} to bring the first and last equations into the same form $v_{k-1}-2 c v_{k}+v_{k+1}=0$. Now $(a-2 c) v_{1}+v_{2}=v_{0}-2 c v_{1}+v_{2}$ if we impose the boundary condition $v_{0}=a v_{1}$. Similarly, the last equation in (13) has the standard form $v_{n-1}-2 c v_{n}+v_{n+1}=0$ if we add the second boundary condition $v_{n+1}=b v_{n}$.
Case 1: $c \neq \pm 1$. The general solution of $v_{k-1}-2 c v_{k}+v_{k+1}=0$ is still

$$
\begin{equation*}
v_{k}=A r^{k}+B r^{-k}, \quad k=2, \ldots, n-1 \tag{14}
\end{equation*}
$$

for some constants A and B. Here $\lambda / 2=c$ and r are related by the equations (3). Thus, r is complex if and only if $|c|<1$. We will pick A and B so that after using the boundary conditions, we get a non-trivial solution.
Case 2: $c= \pm 1$. The general solution of $v_{k-1}-2 c v_{k}+v_{k+1}=0$ is

$$
\begin{equation*}
v_{k}=(A+B k) c^{k}, \quad k=2, \ldots, n-1 \tag{15}
\end{equation*}
$$

for some constants A and B. Again, we will pick A and B so that after using the boundary conditions, we get a non-trivial solution.

Since it is simpler, we first take up CASE 2.
Case 2: $c= \pm 1$ (details). The first boundary condition, $v_{0}=a v_{1}$, implies that $A(1-$ $a c)-B a c=0$. Similarly, the second boundary condition, $v_{n+1}=b v_{n}$ gives $A(c-b)+$ $B[(n+1) c-n b]=0$. These equations for A and B have a non-trivial solution only if the determinant condition

$$
(1-a c)[(n+1) c-n b]+a c(c-b)=0
$$

on the constants a and b is satisfied. We rewrite this explicitly for $c=1$ and $c=-1$:

$$
\begin{array}{lll}
(n+1)+(n-1) a b=n(a+b) & \text { for } & c=1 \\
(n+1)+(n-1) a b=-n(a+b) & & \text { for } \tag{17}
\end{array} \quad c=-1 .
$$

Case 1: $c \neq \pm 1$ (details). The first boundary condition gives

$$
v_{0}=a v_{1}, \quad \text { that is, } \quad A(1-a r)+B(1-a / r)=0
$$

while the second gives

$$
v_{n+1}=b v_{n}, \quad \text { that is, } \quad A r^{n}(r-b)+B r^{-n}\left(r^{-1}-b\right)=0 .
$$

This system of two equations for A and B has a non-trivial solution if and only if the determinant of the coefficient matrix is zero. Thus r must satisfy

$$
\begin{equation*}
r^{-n}(1-a r)(1 / r-b)-r^{n}(1-a / r)(r-b)=0 \tag{18}
\end{equation*}
$$

This can be written as a polynomial of degree $2 n+2$.

$$
\begin{equation*}
p(r):=r^{2 n+2}-\mathcal{A} r^{2 n+1}+\mathcal{B} r^{2 n}-\mathcal{B} r^{2}+\mathcal{A} r-1=0 \tag{19}
\end{equation*}
$$

where $\mathcal{A}:=a+b$ and $\mathcal{B}=a b$. However, two trivial roots are $r= \pm 1$, that is $c= \pm 1$, which are the roots we have excluded in this CASE 1. In Fact 2 below we show how to correlate the remaining $2 n$ roots with the n eigenvalues of T.

The simplest possibilities are i). $a=b=0$ (done above), ii). $a=0, b= \pm 1$, iii). $a= \pm 1, b=0$, iv). $a=b= \pm 1$, and v). $a=-b= \pm 1$. Although not as simple and as these, one can completely analyze the general case. In the following application to coupled oscillators, this general case corresponds to requiring a variety of boundary conditions. For instance the simplest case $a=0$ corresponds to coupled oscillators whose left end is fixed while $a=1$ corresponds to a free end.

We'll present some general facts and then some special examples where it is possible to give more detailed computations.
Fact 1 By Gershgorin's theorem T has one eigenvalue that is in each of the unit circles centered at $\lambda=a$ and $\lambda=b$, while the remaining $n-2$ eigenvalues are in circles centered at the origin with radius 2 . Since $\lambda=2 c$ this means that there are $n-2$ values of c with $|c|<1$ (recall that in this CASE 1 we have excluded $c= \pm 1$).
Fact 2 If we let $F(r):=r^{n}(r-a / r)(r-b)$, then the condition (18) asserts that $F(r)=$ $F(1 / r)$. Thus, in addition to the observation that $r= \pm 1$ is a solution, we see that if r is a solution, then so is $1 / r$. If $|r|=1$ these are complex conjugate pairs.

This helps us understand the relation between the $2 n$ non-trivial roots of (18) and the n eigenvalues $\lambda=2 c$ of T. The relation follows immediately from $c=\frac{1}{2}\left(r+r^{-1}\right)$ since it uses the pair of roots r and $1 / r$. From $r_{ \pm}=c \pm \sqrt{c^{2}-1}$ (from (3)) and that $n-2$ values of c satisfy $|c|<1$ (Fact 1), we deduce that $2(n-2)$ of the roots of (18) lie on the unit circle $|r|=1$ as conjugate pairs.

Fact 3 Since our matrix is symmetric, all of its eigenvalues - and hence the values c are real. This if $r=e^{s+i t}$ is a complex root of (18), then $c=\frac{1}{2}\left(r+r^{-1}\right)$ must be real. But

$$
r+r^{-1}=e^{s+i t}+e^{-s-i t}=\left(e^{s}+e^{-s}\right) \cos t+i\left(e^{s}-e^{-s}\right) \sin t .
$$

Consequently, $\left(e^{s}-e^{-s}\right) \sin t=0$ so either $s=0$ or $t=k \pi, k$ an integer. In other words, the non-real roots of (18) lie on the unit circle $|r|=1$.

Fact 4 Rewrite (18) as

$$
\begin{equation*}
f(r):=r^{2 n} \frac{(r-a)(r-b)}{(1-a r)(1-b r)}=1 \tag{20}
\end{equation*}
$$

Notice that for real a and complex z, if $|a|<1$, if $|z|<1$ then $|(z-a) /(1-a z)|<1$ while if $|z|>1$ then $|(z-a) /(1-a z)|>1$. This implies that if $|a|<1$ and $|b|<1$, then for $|r|<1$ we have $|f(r)|<1$ while if $|r|>1$ then $|f(r)|>1$. It therefore cannot be satisfied for either $|r|<1$ or $|r|>1$. Thus the only possibility is $|r|=1$. Checking the cases $a= \pm 1$ and $b= \pm 1$ separately, we find that for all real $|a| \leq 1$ and $|b| \leq 1$, all the roots of (18) lie on the unit circle $|r|=1$.

We can also deduce this conclusion from Fact 1 since if $|a|<1$ and $|b|<1$, then all of the eigenvalues of T lie in the disk centered at the origin, radius 2 ; consequently $|c| \leq 1$ which implies all the roots of (18) lie on the unit circle $|r|=1$.

Special Examples:

$a=b=0$.
This is the example we did at the beginning of this note. Equation (18) is then $r^{2 n+3}=1$. Excluding the trivial roots $r= \pm 1$ corresponding to $c= \pm 1$ we recover the same results.
$a=b=1$ and $a=b=-1$.
If $a=b=1$ then (18) becomes

$$
0=r^{2 n}(r-1)^{2}-(1-r)^{2}=(r-1)^{2}\left(r^{2 n}-1\right)
$$

so $r=1$ or $r^{2 n}=1$ etc. Write $r=e^{i \theta}$. Then $\theta=k \pi / n, k=1, \ldots, n-1$ (as usual, we exclude $r= \pm 1$, that is, $k=0$ and $k=n$). Consequently,

$$
\lambda=2 c=2 \cos k \pi / n, \quad \text { for } \quad k=1, \ldots, n-1 .
$$

The case $a=b=-1$ is essentially identical.
$a b=1$.
This extends the previous example. Here (18) becomes

$$
0=r^{2 n}\left[r^{2}-(a+1 / a) r+1\right]-\left[1-(a+1 / a) r+r^{2}\right]=(r-a)(r-1 / a)\left(r^{2 n}-1\right)
$$

whose roots are $r=a, r=1 / a$ and the roots of $r^{2 n}=1$ - except $r= \pm 1$.
$a=0, b= \pm 1$ and $a= \pm 1, b=0$.
If $a=0$ and $b=1$, then (18) becomes

$$
0=r^{2 n+1}(r-1)-(1-r)=(r-1)\left(r^{2 n+1}+1\right)
$$

so $r=1$ or $r^{2 n+1}=-1$ etc. The other possibilities are essentially identical.
$a= \pm 1, b=\mp 1$.
In both of these cases (18) becomes

$$
0=r^{2 n}\left(r^{2}-1\right)-\left(1-r^{2}\right)=\left(r^{2}-1\right)\left(r^{2 n}+1\right)
$$

so $r= \pm 1$ or $r^{2 n}=-1$ etc.
$a=-b$.
Here (19) becomes

$$
\begin{equation*}
0=p(r)=r^{2 n}\left(r^{2}-a^{2}\right)-\left(1-a^{2} r^{2}\right) \tag{21}
\end{equation*}
$$

We claim that if $a^{2}<(n+1) /(n-1)$ all the roots of $p(r)=0$ lie on the unit circle $|r|=1$, while if $a^{2}>(n+1) /(n-1)$, then $p(r)=0$ has four real roots: $r=r_{1}>1$, the paired root $r=1 / r_{1}<1$ as well as $r=-r_{1}$ and $r=-1 / r_{1}$, the remainder lying on the unit circle. In other words, if $a^{2}<(n+1) /(n-1)$, then all the eigenvalues of T satisfy $|\lambda|<2$ while
if $a^{2}>(n+1) /(n-1)$, then are exactly two real eigenvalues with $|\lambda|>2$. All of the eigenvalues appear in pairs: λ and $-\lambda$.

To verify these assertions, since (21) only involves r^{2}, it is sufficient to find the positive zeroes of $g(t):=t^{n}\left((t-q)-(1-q t)\right.$, where $q=a^{2} \geq 0$. Clearly $g(0)=-1, g(1)=0$, $g(t)>0$ for large positive t and $g(1 / t)=-t^{-(n-1)} g(t)$. Also $g^{\prime}(t)=(n+1) t^{n}-n q t^{n-1}+q$ and $g^{\prime \prime}(t)=n t^{n-2}[(n+1) t-(n-1) q]$. Thus $g^{\prime \prime}(t)=0$ at $t=0$ and $t=t_{0}:=\frac{n-1}{n+1} q$ so $g^{\prime}\left(t_{0}\right)=\left[1-t_{0}^{n-1}\right] q$. This shows that if $t_{0} \leq 1$, that is, if $q \leq \frac{n+1}{n-1}$, then $g^{\prime}(t) \geq 0$ for all $t \geq 0$ and hence $g(t)$ has only only one positive real zero, located at $t=1$. On the other hand, if $t_{0}>1$, then $g(t)$ has three real positive zeroes: at $t_{1}=1, t=t_{2}$ for some $t_{2}>1$, and $t=t_{3}=1 / t_{2}$.
$a=0$.
Here (19) becomes

$$
\begin{equation*}
0=p(r)=r^{2 n+1}(r-b)-(1-b r)=r^{2 n+2}-b r^{2 n+1}+b r-1 . \tag{22}
\end{equation*}
$$

Since $a=0$ we already know that p has $2(n-1)$ zeroes on $|r|=1$ in addition to the two trivial zeroes $r= \pm 1$. Thus there are at most two additional real zeroes: $r=r_{1}$ and $r=1 / r_{1}$. We claim that these real zeroes exist (and are not +1 or -1) if and only if $|b|>\frac{n+1}{n}$; otherwise all of the non-trivial zeroes are on the unit circle $|r|=1$.

The reasoning is similar to the previous example. We use $p^{\prime}(r)=(2 n+2) r^{2 n+1}-$ $(2 n+1) r^{2 n}+b$ and $p^{\prime \prime}(r)=2(2 n+1) r^{2 n-1}[(n+1) r-n b]$. Then $p(0)=-1, p(\pm 1)=0$, $p^{\prime}(0)=b$ and the only zero of $p^{\prime \prime}$ is at $r_{0}:=\frac{n b}{n+1}$. Now $p^{\prime}\left(r_{0}\right)=b\left(1-r_{0}^{2 n}\right)$. Say $b>0$. If $r_{0} \leq 1$, that is, if $b \leq \frac{n+1}{n}$, then $p^{\prime}(r) \geq 0$ for all $r \geq 0$ so $p(r)$ has only the trivial zero at $r=1$. The reasoning for $r<0$ and $b<0$ are similar.
$n=2$.
The characteristic polynomial of T is $\lambda^{2}-(a+b) \lambda+a b-1$ so its eigenvalues are

$$
\lambda_{ \pm}=\frac{a+b}{2} \pm \sqrt{\left(\frac{a-b}{2}\right)^{2}+1}
$$

In particular, if $|a-b| \gg 1$ then $\lambda_{ \pm} \approx a, b$ while if $a \approx b$, then $\lambda_{ \pm} \approx \frac{1}{2}(a+b) \pm 1$.

General Case

One can use the reasoning of the examples $a=-b$ and $a=0$ ang obtain a fairly complete discussion of the general case. The key quantities are $p^{\prime}(\pm 1)$, so we record these here:

$$
p^{\prime}(1)=2[(n+1)-n \mathcal{A}+(n-1) \mathcal{B}], \quad p^{\prime}(-1)=-2[(n+1)+n \mathcal{A}+(n-1) \mathcal{B}]
$$

From (19) and the above facts we know that $p(0)=-1, p(\pm 1)=0, p(\pm \infty)>0$, and that there are at most four other real roots, each appearing as a pair $r, 1 / r$. Becaues of this
pairing, the roots $r= \pm 1$ can only have multiciplities 1,3 , and 5 , so if $p^{\prime}(1)=0$, then also $p^{\prime \prime}(1)=0$, etc. These imply
$\mathbf{1}$, If $\mathbf{p}^{\prime}(\mathbf{1})<\mathbf{0}$: then p has exactly two non-trivial positive zeroes, at some $0<r_{1}<1$ and $r_{2}:=1 / r_{1}>1$.
2. If $\mathbf{p}^{\prime}(-\mathbf{1})<\mathbf{0}$: then p has exactly two non-trivial negative zeroes, at some $-1<r_{1}<0$ and $r_{2}:=1 / r_{1}<-1$.
3. If $\mathbf{p}^{\prime}(\mathbf{1})>\mathbf{0}$: then p has either four or no real positive roots.
4. If $\mathbf{p}^{\prime}(-\mathbf{1})<\mathbf{0}$: then p has either four or no real non-trivial negative roots.
5. If $\mathbf{p}^{\prime}(\mathbf{1})=\mathbf{0}$ and $\mathbf{p}^{\prime \prime \prime}(\mathbf{1})<\mathbf{0}$: then p has exactly five positive zeroes: $r=+1$ with multiciplity three and two non-trivial positive zeroes, at some $0<r_{1}<1$ and $r_{2}:=1 / r_{1}>$ 1. If $\mathbf{p}^{\prime}(\mathbf{1})=\mathbf{0}$ and $\mathbf{p}^{\prime \prime \prime}(\mathbf{1})>\mathbf{0}$, then the only positive roots of p are $r=1$ with multiciplity three. Finally,, if $\mathbf{p}^{\prime}(\mathbf{1})=\mathbf{p}^{\prime \prime \prime}(\mathbf{1})=\mathbf{0}$, then also $p^{\prime \prime}(1)=p^{\prime \prime \prime \prime}(1)=0$ so $r=1$ is a root with multiciplity five and there can not be any other non-trivial real roots.
6. If $\mathbf{p}^{\prime}(-\mathbf{1})=\mathbf{0}$ and $\mathbf{p}^{\prime \prime \prime}(\mathbf{1})>\mathbf{0}$: then p has exactly five negative zeroes: $r=-1$ with multiciplity three and two non-trivial negative zeroes, at some $-1<r_{1}<0$ and $r_{2}:=$ $1 / r_{1}<-1$. If $\mathbf{p}^{\prime}(-\mathbf{1})=\mathbf{0}$ and $\mathbf{p}^{\prime \prime \prime}(\mathbf{1})<\mathbf{0}$, then the only negative roots of p are $r=$ -1 with multiciplity three. Finally, if $\mathbf{p}^{\prime}(-\mathbf{1})=\mathbf{p}^{\prime \prime \prime}(-\mathbf{1})=\mathbf{0}$, then $r=-1$ is a root with multiciplity five and there can not be any other non-trivial real roots.

We'll prove only the first of these assertions; the others are similar. Thus we assume $\mathbf{p}^{\prime}(\mathbf{1})<\mathbf{0}$. Since $p(1)=0$, then $p(r)<0$ for small $r>1$. Thus, if p had two real roots greater than 1 , it would also have a third. Consequently it would have six non-trivial positive roots, which is impossible,
CONSEQUENCE: If a and b have opposite sign (or if one of them is zero), then p can have at most one pair of non-tivial positive roots and one pair of non-trivial negative roots. This eliminates the only ambiguity in 3) and 4) above so one obtains a complete analysis. The examples $a=-b$ and $a=0$ are both included here.

If a and b have the same sign, then the only missing piece is the ambiguity in 3) and 4) above.

A Vibrating String (coupled oscillators)

Say we have n particles with the same mass m equally spaced on a string having tension τ. Let y_{k} denote the vertical displacement if the $\mathrm{k}^{\text {th }}$ mass. Assume the ends of the string are fixed; this is the same as having additional particles at the ends, but with zero displacement: $y_{0}=0$ and $y_{n+1}=0$. Let ϕ_{k} be the angle the segment of the string between the $\mathrm{k}^{\text {th }}$ and $\mathrm{k}+{ }^{\text {st }}$ particle makes with the horizontal. Then Newton's second law of motion applied to the $\mathrm{k}^{\text {th }}$ mass asserts that

$$
\begin{equation*}
m \ddot{y}_{k}=\tau \sin \phi_{k}-\tau \sin \phi_{k-1}, \quad k=1, \ldots, n . \tag{23}
\end{equation*}
$$

If the particles have horizontal separation h, then $\tan \phi_{k}=\left(y_{k+1}-y_{k}\right) / h$. For the case of small vibrations we assume that $\phi_{k} \approx 0$; then $\sin \phi_{k} \approx \tan \phi_{k}=\left(y_{k+1}-y_{k}\right) / h$ so we can rewrite (23) as

$$
\begin{equation*}
\ddot{y}_{k}=p^{2}\left(y_{k+1}-2 y_{k}+y_{k-1}\right), \quad k=1, \ldots, n, \tag{24}
\end{equation*}
$$

where $p^{2}=\tau / m h$. This is a system of second order linear constant coefficient differential equations with the boundary conditions $y_{0}(t)=0$ and $y_{n+1}(t)=0$. As usual, one seeks special solutions of the form $y_{k}(t)=v_{k} e^{\alpha t}$. Substituting this into (24) we find

$$
\alpha^{2} v_{k}=p^{2}\left(v_{k+1}-2 v_{k}+v_{k-1}\right), \quad k=1, \ldots, n,
$$

that is, α^{2} is an eigenvalue of $p^{2}(T-2 I)$. From the work above we conclude that

$$
\alpha_{k}^{2}=-2 p^{2}\left(1-\cos \frac{k \pi}{n+1}\right)=-4 p^{2} \sin ^{2} \frac{k \pi}{2(n+1)}, \quad k=1, \ldots, n,
$$

so

$$
\alpha_{k}=2 i p \sin \frac{k \pi}{2(n+1)}, \quad k=1, \ldots, n .
$$

The corresponding eigenvectors V_{k} are the same as for T. Thus the special solutions are

$$
Y_{k}(t)=V_{k} e^{2 i p t \sin \frac{k \pi}{2(n+1)}}, \quad k=1, \ldots, n,
$$

where $Y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)$.

