A Tridiagonal Matrix

We investigate the simplie x n real tridiagonal matrix:

a BO..0O0O 010..000
BapB .. 000 101..000
O Ba .. 000 010..000

M= ; : =al + : : =al + BT,
0 00..appBo 000..010
00O0..pBa6pf 000..101
0 00..0@Ba 000..010

whereT is defined by the preceding formula. This matrix arises inyrapplications, such
asn coupled harmonic oscillators and solving the Laplace egnatumerically. Clearly
M and T have the same eigenvectors and their respective eigesvataaelated byt =
o+ BA. Thus, to understanhi it is sufficient to work with the simpler matriX .

Eigenvalues and Eigenvectors bf

Usually one first finds the eigenvalues and then the eigeorseof a matrix. ForT , it
is a bit simpler first to find the eigenvectors. Lebe an eigenvalue (necessarily real) and
V = (v1,V2,...,Vn) be a corresponding eigenvector. It will be convenient taenki= 2c.
Then

-2c 1 0O O 0 0 Vi
1 -2 1 0 0 0 Vo
0 1 -2 1 0 0 V3
0=(T—-AH)V=] : :
0 0 —-2c 1 0 Vn_2
0 0 0 1 -2 1 Vn-1
0 0 0 0 1 -2c Vi
(1)
—2cV1 +Vo
V1 — 2C\o + V3
= | Vk-1—2CW%+ Vk+1
Vn—2 — 2CVh—1+Vh
Vn_]_ - ZCVn
Except for the first and last equation, these have the form
Vi1 — 20+ Vi1 = 0. (2)

1



We can also bring the first and last equations into this samme by introducing new arti-
ficial variablesvp andv,. 1, setting their values as zergy = 0, vh,.1 = 0.

The result (2) is aecond order linear difference equation with constant caefiis
along with theboundary conditionsg/= 0, andv,;1 = 0. As usual for such equations one
seeks a solution with the form, = rk. Equation (2) then gives 1 2cr +r2 = 0 whose

roots are
rr=ctvc2-1

Note also

2c=r+rt and rir_=1 (3)

Casel: c# +1. In this case the two roots, are distinct. Letr :==r, =c++v/c2—1.
Sincer_ =c—+/c2—1=1/r, we deduce that the general solution of (1) is

w=Ark+Br %  k=2..n-1 (4)

for some constantd and B which.
The first boundary conditionjg = 0, givesA+B =0, so

vk:A(r"—r*k), k=1,....n—1 (5)

Since for a non-trivial solution we needl# 0, the second boundary conditiow,, 1 =0
implies

pntl r—(n+1) =0, so r2(n+1) -1
In particular, |r| = 1. Using (3), this gives [2| < |r|+|r|t = 2. Thus|c| < 1. In fact,
|c| < 1 because we are assuming that +1.

Case2: c=41. Thenr = c and the general solution of (1) is now
Vk = (A4 Bk)cX

The boundary conditiowg = 0 implies thatA = 0. The other boundary condition then
gives 0= V1 = B(n+1)c™1. This is satisfied only in the trivial case = 0. Conse-
guently the equations (1) have no non-trivial solutiondet +1.

It remains to rewrite our results in a simpler way. We are in€Chso|r| = 1. Thus
r=¢€% c=cosB, and 1= r2n*tD) = (™18  Consequently (h+ 1)0 = 2kt for some
1<k<n(weexcludek=0 andk=n+1 because we know that# +1, sor # +1).
Normalizing the eigenvecto by the choiceA = 1/2i, we summarize as follows:



Theorem 1 The nx n matrix T has the eigenvalues

)\k:ZC:Zcosezzcos%, 1<k<n

and corresponding eigenvectors

Vi = (sinaT sin2 sink).
REMARK 1. If n=2k+1 is odd, then the middle eigenvalue is zero becgksel)m/(n+

1) = (k+1)1/2(k+ 1) =11/2.

REMARK 2. Since 2b= a®+ b? — (a— b)? < a® + b? with equality only ifa=b, we see
that for anyx € R"

(X, TX) = 2(XgX2 + XoX3+ - - +Xn_1%n) <X+ 208 + - +X2_1) +x2 < 2||x||?

with equality only if x= 0. Similarly (x, TX) > —2||x||?. Thus, the eigenvalues df are
in the interval—2 < A < 2. Although we obtained more precise information aboves it i
useful to observe that we could have deduced this so easily.

REMARK 3. Gershgorin’s circle theorens also a simple way to get information about the
eigenvalues of a square (complex) matkix= (a;j). Let D; be the disk whose center is at
aji and radius iR = zj¢i|a;j , SO

A —ajj| <R;.
These are th&ershgorin disks

Theorem 2 (Gershgorin) Each eigenvalues of A lies in at least one of these Gershgorin
discs.

Proof: SayAx= Ax and say|x| = max;|xj|. Thei™ component ofAx= Ax is

(A —ai)x = a&jX;
J#

SO
|(N — & )xi| < ;|aij||xj| < R[]
B4

That is, |\ — aji| <R, as claimed.

By Gershgorin’s theorem, we observed immediately that athefeigenvalues of
satisfy |A| < 2.



Determinant ofT — Al

We use recursion on, the size of then x n matrix T. It will be convenient to build
on (1) and letD,, = detT — Al ). As before, letA = 2c. Then, expanding by minors using
the first column of (1) we obtain the formula

Dn: —2CDn_]_—Dn_2 n:374, (6)

SinceD; = —2c and D, = 4¢? — 1, we can use (6) to defin@g := 1. The relation (6) is,
except for the sign o€, is identical to (2). The solution for # +1 is thus

Dy=As‘+Bs ¥  k=0,1,..., (7)

where
1

and s=-c+vc2-1 (8)

This time we determine the constamits B from theinitial conditions ) = 1 andD; =
—2c. Theresultis

—2C=S+S

N Fv = R ©
k:
(—c)K(k+1) if c=+1.

For many purposes it is useful to rewrite this.

Casel: |¢| < 1. Thens= —c+iv1—c? has|s| =1 sos=€* andc = — cosa for some
0 < a < 1. Therefore from (9),

sin(k+1)a
Dy=—"-—"7"—. 10
k sinal (10)
Case2: ¢> 1. Write c= coshB for somep > 0. Since—eP —e P = —2c=s+s1, write
s= —éP. Then from (9),
(sinh(k+ 1)
sinhg
where we chose the sign icZ — 1 = —sinh so thatDg = 1.

Case 3: ¢ < —1. Write c = —cosh for somep > 0. Sinced +e ' = -2c=s+s1,
write s= €. Then from (9),

Dk = (1) (11)

_sinh(k+1)B
T Tsinhg
where we chose the sign ic2 — 1 = 4+ sinht so thatDg = 1.

Note that ag — 0 in (10)—(12), that is, as — +1. these formulas agree with the case
c=+411in(9).
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A Small Generalization

This procedure can be extended to the slightly more gerredi@donal matrices having
different elements in the upper-left and lower-right esgri

Yy BO O .. 00 al0 0 00
BapB O .. 00 101 0 0 0
OB o B ... 00 010 1..00
M=1|: : - Do =a B | = al 4T,
000.. a BO 000.. 0 10
000.. B a6p 000.. 1 01
00O0.. 0 B3 000.. 0 165

wherea= (y—a)/pB andb= (5—a)/B. These arises in various applications.
As in equation (1) above, we need to find the eigenvalues2c and eigenvectors
of T, so

a—-2c 1 0 0 0 0 V1

1 —-2c 1 0 0 0 Vo

0 1 -2 1 0 0 V3

O=(T-Al)v= : : - : : :
0 0 O ... -2 1 0 Vh—2
0 0 0 1 —-2c 1 Vn—1

0 0 0 0 1 b-—2c Vi

(13)
(a—2c)v1+ V2
V1 — 2C\Vo + V3

= | Vk—1— 2CW + Vik+1

Vn—2 — 2CVh—1+Vn
Vn—1+ (b—2c)vy

Here and throughout our discussiarand b will be real parameters.

As before, we introduce new variableg andv,. 1 to bring the first and last equations
into the same formvi_1 — 2cW + Vkr1 = 0. Now (a— 2c)vy + Vo = Vo — 2¢cvy + Vs if
we impose the boundary conditio = av;. Similarly, the last equation in (13) has the
standard formv,_; — 2cvh + V1 = 0 if we add the second boundary conditign 1 = bv.
Case 1l: c# +1. The general solution ofi_1 — 2cV + k1 = 0 is still

w=Ark+Br %  k=2..n-1 (14)



for some constantd andB. HereA/2 = c andr are related by the equations (3). Thus,
r is complex if and only iflc| < 1. We will pick A and B so that after using the boundary
conditions, we get a non-trivial solution.

Case2: c=+1. The general solution ofg_; — 2CV+ V1 =0 is

w=(A+BKc,  k=2..n-1 (15)

for some constantd andB. Again, we will pick A andB so that after using the boundary
conditions, we get a non-trivial solution.

Since it is simpler, we first take upASE 2.
Case 2. ¢ = +1 (details). The first boundary conditionyo = avq, implies thatA(1 —
ac) —Bac= 0. Similarly, the second boundary condition,.; = bv, gives A(c—b) +
B[(n+1)c—nb] = 0. These equations fok and B have a non-trivial solution only if the
determinant condition

(1—ac)[(n+1)c—nbj+ac(c—b)=0
on the constanta andb is satisfied. We rewrite this explicitly far=1 andc= —1:

(n+1)+(n—1)ab=n(a+b) for c=1 (16)
(n+1)+ (n—1)ab= —n(a+b) for c=-1 (17)

Case 1: c+# +1 (details). The first boundary condition gives
Vo = av, thatis, A(l—ar)+B(1—a/r)=0,
while the second gives
Vni1=bw,  thatis, Ar(r—b)+Br"(r'1—b)=0.

This system of two equations fok and B has a non-trivial solution if and only if the
determinant of the coefficient matrix is zero. Thumust satisfy

r—"(1—ar)(1/r—b)—r"(1—a/r)(r—b) =0. (18)
This can be written as a polynomial of degree+22.
p(r) :=r?"2_ gr2l L g0 _pr2 4 qr —1=0, (19)

where 4 := a-+ b and B = ab. However, two trivial roots are = +1, that isc = 41,
which are the roots we have excluded in thisse 1. In Fact 2 below we show how to
correlate the remainingn2roots with then eigenvalues ofl .



The simplest possibilities are i)Ja=b = 0 (done above), ii).a= 0,b = +1, iii).
a==+1,b=0,iv). a=b=+1,andv).a= —b = +1. Although not as simple and as
these, one can completely analyze the general case. Inlkbwif@ application to coupled
oscillators, this general case corresponds to requirirayiaty of boundary conditions. For
instance the simplest case= 0 corresponds to coupled oscillators whose left end is fixed
while a= 1 corresponds to a free end.

We’'ll present some general facts and then some special dgampere it is possible
to give more detailed computations.

Fact 1 By Gershgorin’s theorenT has one eigenvalue that is in each of the unit circles
centered ah = a andA = b, while the remainingh— 2 eigenvalues are in circles centered
at the origin with radius 2. Sinck = 2c¢ this means that there are— 2 values ofc with

|c| < 1 (recall that in thiscASE 1 we have excluded = +1).

Fact 2 If we let F(r) :=r"(r —a/r)(r — b), then the condition (18) asserts thafr) =
F(1/r). Thus, in addition to the observation that +1 is a solution, we see thatiifis a
solution, then sois Ar. If |[r| =1 these are complex conjugate pairs.

This helps us understand the relation between thadh-trivial roots of (18) and the
n eigenvalues\ = 2c of T. The relation follows immediately fromm= %(r +r~1) since it
uses thepair of rootsr and J/r. Fromr. = c++/c?2— 1 (from (3)) and thanh — 2 values
of ¢ satisfy |c| < 1 (Fact 1), we deduce tha{r2— 2) of the roots of(18) lie on the unit
circle [r| = 1 as conjugate pairs

Fact 3 Since our matrix is symmetric, all of its eigenvalues — anddeethe valueg —

are real. This ifr = €' is a complex root of (18), thea= %(r +r~1) must be real. But
r+rl=ett e st — (e4e 5 cost+i(e—e5)sint.

Consequently(e®>— e 5)sint = 0 so eithers= 0 ort = ki, k an integer. In other words,

the non-real roots 0{18) lie on the unit circle|r| = 1.

Fact 4 Rewrite (18) as

_ 2 (r=3)(r—b)
f(r)y:=r (1—ar)(1—br)_1' (20)

Notice that for reab and complexz, if |a] < 1,if |7l < 1 then|(z—a)/(1—az)| < 1 while
if |2 > 1 then|(z—a)/(1—az| > 1. This implies that ifla] < 1 and|b| < 1, then for
Ir| <1 we have|f(r)| <1 whileif [r| > 1 thenf(r)| > 1. It therefore cannot be satisfied
for either|r| <1 or |r| > 1. Thus the only possibility i§'| = 1. Checking the cases= +1
andb = +1 separately, we find thafor all real |a] <1 and |b| < 1, all the roots of(18)
lie on the unit circle|r| = 1.

We can also deduce this conclusion from Fact 1 sin¢& i 1 and|b| < 1, then all of
the eigenvalues of lie in the disk centered at the origin, radius 2; conseqyelotl< 1
which implies all the roots of (18) lie on the unit circlg = 1.
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Special Examples:

a=b=0.

This is the example we did at the beginning of this note. Equdtl8) is thenr?™3 =1,
Excluding the trivial roots = +1 corresponding t@ = +1 we recover the same results.

a=b=1 anda=b=-1.
If a=b=1 then (18) becomes
0=r(r—12—(1-r)2=(r—1)>%r*" -1

sor=1orr? =1 etc. Writer =€®. Then®=km/n, k=1,...,n—1 (as usual, we
excluder = +1, that is,k = 0 andk = n). Consequently,

A = 2c = 2cor/n, for k=1,....n—1

The casea = b = —1 is essentially identical.

ab=1.

This extends the previous example. Here (18) becomes
0=r"r’—(a+1/a)r+1)—[1—(a+1/ar+r?] = (r—a)(r—1/a)(r®—1)

whose roots are = a, r = 1/a and the roots of?" = 1 — exceptr = +1.

a=0 b=+1 anda=+1, b=0.

If a=0 andb= 1, then (18) becomes
O=r"r—1)—(1—r)=(r—21)(r*"141),

sor =1 orr?™1 = _1 etc. The other possibilities are essentially identical.
a=+1 b=F1.
In both of these cases (18) becomes

0=r"(r2—1)— (1—r?) = (r2—=1)(r"+1),

sor =41 orr?"= —1 etc.

a=—b.
Here (19) becomes
0=p(r) =r"(r2—a?) — (1—a’r?). (21)

We claim that ifa? < (n+1)/(n— 1) all the roots ofp(r) = 0 lie on the unit circlgr| = 1,
while if & > (n+1)/(n—1), thenp(r) = 0 has four real roots: =r; > 1, the paired root
r=1/r1 <1 aswellag = —r; andr = —1/r1, the remainder lying on the unit circle. In
other words, ifa® < (n+1)/(n— 1), then all the eigenvalues Gf satisfy |]A| < 2 while
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if & > (n+1)/(n—1), then are exactly two real eigenvalues wjitj > 2. All of the
eigenvalues appear in pairs:and —A.

To verify these assertions, since (21) only involvésit is sufficient to find the positive
zeroes ofg(t) :=t"((t —q) — (1—qt), whereq= a2 > 0. Clearlyg(0) = -1, g(1) =0,
g(t) > 0 for large positive andg(1/t) = —t—("Vg(t). Also ¢'(t) = (n+ )t"—ngt" 1 +q
andg”’(t) = nt"?[(n+ 1)t — (n—1)g]. Thusg’(t) =0 att =0 andt =tg := %q SO
g (to) = [1—t§ !g. This shows that itp < 1, that is, ifg < &1, theng/(t) > 0 for all
t > 0 and henceg(t) has only only one positive real zero, located at 1. On the other
hand, iftop > 1, theng(t) has three real positive zeroes:tat=1, t =t, for somet, > 1,
andt =tz = 1/ty.

a=_0.
Here (19) becomes

0=p(r)=r®Yr—b)—(1—br)=r?2_pr2"1l  pr—1. (22)

Sincea = 0 we already know thap has Zn— 1) zeroes on|r| = 1 in addition to the
two trivial zeroesr = +1. Thus there are at most two additional real zeraes:r; and
r=1/r1. We claim that these real zeroes exist (and are-pbtor —1) if and only if
b| > ™1 otherwise all of the non-trivial zeroes are on the unitleifc| = 1.

The reasoning is similar to the previous example. We pi$e) = (2n+ 2)r2"t —
(2n+1)r"+b andp’(r) = 2(2n+1)r>~Y[(n+1)r —nb]. Thenp(0) = -1, p(+1) =0,
P (0) = b and the only zero op” is atrg := %_ Now p'(ro) = b(1—r2"). Sayb > 0. If
ro <1, thatis, ifb < %1 thenp/(r) > 0 forall r > 0 sop(r) has only the trivial zero at
r =1. The reasoning for < 0 andb < 0 are similar.

n=2.
The characteristic polynomial af is A% — (a+b)A +ab— 1 so its eigenvalues are

a+b a—b\?
Ae=——H4/|— 1.
+ 5 ( > ) +
In particular, ifla—b| >> 1 thenA; ~ a, b while if a~ b, thenA; = %(a+ b)+1.

General Case

One can use the reasoning of the examp@es —b and a = 0 ang obtain a fairly
complete discussion of the general case. The key quarditgs(+1), so we record these
here:

p'(1) =2[(n+1) —n4+ (n—1)3], p'(—1) = —-2[(n+1)+n4+(n—1)3B]

From (19) and the above facts we know th#0) = —1, p(+1) = 0, p(£») > 0, and
that there are at most four other real roots, each appeasiagairr, 1/r . Becaues of this
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pairing, the roots = +1 can only have multiciplities 1, 3, and 5, sopf(1) = 0, then
alsop”’(1) =0, etc. These imply

1, If p’(1) < 0: then p has exactly two non-trivial positive zeroes, at some < 1 and
rp:=1/r1 > 1.

2. If p'(—1) < 0: then p has exactly two non-trivial negative zeroes, at sopie<r; <0
andry:=1/rp < —1.

3. 1f p’(1) > 0: then p has either four or no real positive roots.

4. 1f p'(—1) < 0: then p has either four or no real non-trivial negative roots.

5 If p’(1) =0 andp”(1) < 0: then p has exactly five positive zeroes: = +1 with
multiciplity three and two non-trivial positive zeroessaime O<r; <1 andrp:=1/r; >
1.If p'(1) =0andp”(1) > 0, then the only positive roots qf arer = 1 with multiciplity
three. Finally,, ifp’(1) = p”’(1) = 0, then alsop”(1) = p””(1) =0 sor =1 is a root with
multiciplity five and there can not be any other non-triviadkroots.

6. If p’(—1) =0 andp”’(1) > 0: then p has exactly five negative zeroes= —1 with
multiciplity three and two non-trivial negative zeroes,satme —1 <rq; <0 andr, :=
1/r1 < —1. If p(-1)=0 and p”(1) < 0, then the only negative roots qf arer =
—1 with multiciplity three. Finally, ifp’(—1) = p”/(—1) =0, thenr = —1 is a root with
multiciplity five and there can not be any other non-triviadkroots.

We'll prove only the first of these assertions; the otherssarelar. Thus we assume
p'(1) < 0. Sincep(1) =0, thenp(r) < 0 for smallr > 1. Thus, if p had two real roots
greater than 1, it would also have a third. Consequently itldvtniave six non-trivial
positive roots, which is impossible,

CONSEQUENCE If a andb have opposite sign (or if one of them is zero), theran
have at most one pair of non-tivial positive roots and one glanon-trivial negative roots.
This eliminates the only ambiguity in 3) and 4) above so ortaiob a complete analysis.
The examples = —b anda = 0 are both included here.

If a andb have the same sign, then the only missing piece is the antpigu8) and
4) above.

A Vibrating String (coupled oscillators)

Say we haven particles with the same masa equally spaced on a string having
tensiont. Let y, denote the vertical displacement if th& knass. Assume the ends of the
string are fixed; this is the same as having additional gegtiat the ends, but with zero
displacementyy = 0 andy,,1 = 0. Let ¢ be the angle the segment of the string between
the KN and k+2! particle makes with the horizontal. Then Newton’s secomddamotion
applied to the K mass asserts that

My = TSIN@ — TSINQ_1, k=1,...,n (23)
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If the particles have horizontal separatibnthen tampg = (ykr1 — Yk)/h. For the case
of small vibrations we assume th@at ~ 0; then sinp ~ tang = (Yk+1 — Yk)/h So we can
rewrite (23) as

Vo= PP(We1— k+Yi1),  k=1...,n, (24)
where p? = 1/mh. This is a system of second order linear constant coefficidferential
equations with the boundary conditiogg(t) = 0 andyn.1(t) = 0. As usual, one seeks
special solutions of the form(t) = ve™ . Substituting this into (24) we find

oA = PP(Vip1 — 2V +Vi_1),  k=1,...,n,

that is,a? is an eigenvalue op?(T — 21). From the work above we conclude that

= —2p*(1—cosTy) = —4p?sir? 5 K1 n+1 k=1,...,n,
)
ay = 2ipsin (r|$1) k=1,...,n

The corresponding eigenvectdrg are the same as far. Thus the special solutions are
2|ptsm
Yi(t) = W€ (”H) k=1,...,n,

whereY (t) = (yi(t),...,yn(t)).
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