Directions This exam has three parts, Part A has 4 problems asking for Examples (20 points, 5 points each), Part B asks you to describe some sets (20 points), Part C has 4 traditional problems (60 points, 15 points each).
Closed book, no calculators - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes.
Part A: Examples (4 problems, 5 points each). Give an example of an infinite set in a metric space (perhaps \mathbb{R}) with the specified property.

A-1. Bounded with exactly two limit points.

A-2. Containing all of its limit points.

A-3. Distinct points $\left\{x_{j}\right\}, j=1,2, \ldots$ with $x_{i} \neq x_{j}$ for $i \neq j$ that is compact.

A-4. Closed and bounded but not compact.

Part B: Classify sets (20 points) For each of the following sets, circle the listed properties it has:
a) $\left\{1+\frac{1}{n} \in \mathbb{R}, n=1,2,3, \ldots\right\}$ open closed bounded compact countable
b) $\{1\} \cup\left\{1+\frac{1}{n} \in \mathbb{R}, n=1,2,3, \ldots\right\}$

	open	closed	bounded	compact	countable
c) $\left\{(x, y) \in \mathbb{R}^{2}: 0<y \leq 1\right\}$	open	closed	bounded	compact	countable
d) $\left\{(x, y) \in \mathbb{R}^{2}: x=0\right\}$	open	closed	bounded	compact	countable
e) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$	open	closed	bounded	compact	countable
f) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$	open	closed	bounded	compact	countable
g) $\left\{(x, y) \in \mathbb{R}^{2}: y>x^{2}\right\}$	open	closed	bounded	compact	countable

h) $\left\{(k, n) \in \mathbb{R}^{2}: k, n\right.$ any positive integers $\}$
open closed bounded compact countable

Part C: Traditional Problems (4 problems, 20 points each)
C-1. In \mathbb{R}, if $a_{n} \rightarrow A$ and $b_{n} \rightarrow B$, show that the product $a_{n} b_{n} \rightarrow A B$.
C-2. Given a real sequence $\left\{a_{k}\right\}$, let $C_{n}=\frac{a_{1}+\cdots+a_{n}}{n}$ be the sequence of averages (arithmetic mean). If a_{k} converges to A, show that the averages C_{n} also converge to A.

C-3. Let $K_{j}, j=1,2, \ldots$ be compact sets in a metric space. Give a proof or counterexample for each of the following assertions.
a) $K_{1} \cap K_{2}$ is compact.
b) $K_{1} \cup K_{2}$ is compact.
c) $\bigcup_{j=1}^{\infty} K_{j}$ is compact.

C-4. In a complete metric space M, let $d(x, y)$ denote the distance. Assume there is a constant $0<c<1$ so that the sequence x_{k} satisfies

$$
d\left(x_{n+1}, x_{n}\right)<c d\left(x_{n}, x_{n-1}\right) \quad \text { for all } \quad n=1,2, \ldots
$$

a) Show that $d\left(x_{n+1}, x_{n}\right)<c^{n} d\left(x_{1}, x_{0}\right)$.
b) Show that the $\left\{x_{k}\right\}$ is a Cauchy sequence.
c) Show that there is some $p \in M$ so that $\lim _{n \rightarrow \infty} x_{k}=p$.

