Math 508 October 12, 2006

Exam 1

DIRECTIONS This exam has three parts, Part A has 4 problems asking for Examples (20 points, 5 points each), Part B asks you to describe some sets (20 points), Part C has 4 traditional problems (60 points, 15 points each).

Closed book, no calculators – but you may use one $3'' \times 5''$ card with notes.

Part A: Examples (4 problems, 5 points each). Give an example of an infinite set in a metric space (perhaps \mathbb{R}) with the specified property.

A–1. Bounded with exactly two limit points.

A–2. Containing all of its limit points.

A-3. Distinct points $\{x_i\}, j = 1, 2, \dots$ with $x_i \neq x_j$ for $i \neq j$ that is compact.

A–4. Closed and bounded but not compact.

Part B: Classify sets (20 points) For each of the following sets, **circle** the listed properties it has:

a)	$\{1 + \frac{1}{n} \in \mathbb{R}, n = 1, 2, 3, \ldots\}$	open	closed	bounded	compact	countable
b)	$\{1\} \cup \{1 + \frac{1}{n} \in \mathbb{R}, \ n = 1, 2, 3,$	}				
		open	closed	bounded	compact	countable
c)	$\{(x,y) \in \mathbb{R}^2: 0 < y \leq 1\}$	open	closed	bounded	compact	countable
d)	$\{(x,y)\in \mathbb{R}^2: x=0\}$	open	closed	bounded	compact	countable
e)	$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$	open	closed	bounded	compact	countable
f)	$\{(x,y)\in \mathbb{R}^2: x^2+y^2\leq 1\}$	open	closed	bounded	compact	countable
g)	$\{(x,y)\in \mathbb{R}^2: y>x^2\}$	open	closed	bounded	compact	countable
h)	$\{(k,n)\in\mathbb{R}^2:k,n \text{ any positive}\}$	e integer	$s\}$			
		open	closed	bounded	compact	countable

Part C: Traditional Problems (4 problems, 20 points each)

C-1. In \mathbb{R} , if $a_n \to A$ and $b_n \to B$, show that the product $a_n b_n \to AB$.

- C-2. Given a real sequence $\{a_k\}$, let $C_n = \frac{a_1 + \cdots + a_n}{n}$ be the sequence of averages (arithmetic mean). If a_k converges to A, show that the averages C_n also converge to A.
- C-3. Let K_j , j = 1, 2, ... be compact sets in a metric space. Give a proof or counterexample for each of the following assertions.
 - a) $K_1 \cap K_2$ is compact.
 - b) $K_1 \cup K_2$ is compact.
 - c) $\bigcup_{j=1}^{\infty} K_j$ is compact.
- C–4. In a *complete* metric space M, let d(x, y) denote the distance. Assume there is a constant 0 < c < 1 so that the sequence x_k satisfies

$$d(x_{n+1}, x_n) < cd(x_n, x_{n-1})$$
 for all $n = 1, 2, ...$

- a) Show that $d(x_{n+1}, x_n) < c^n d(x_1, x_0)$.
- b) Show that the $\{x_k\}$ is a Cauchy sequence.
- c) Show that there is some $p \in M$ so that $\lim_{n\to\infty} x_k = p$.