Directions This exam has three parts, Part A has 4 problems asking for Examples (20 points, 5 points each), Part B asks you to describe some sets (20 points), Part C has 4 traditional problems (60 points, 15 points each).
Closed book, no calculators - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes.
Part A: Examples (4 problems, 5 points each). Give an example of an infinite set in a metric space (perhaps \mathbb{R}) with the specified property.

A-1. Bounded with exactly two limit points.
Solution: The set $\left\{(-1)^{n}\left(1+\frac{1}{n}\right), n=1,2,3, \ldots\right\}$ in \mathbb{R}.

A-2. Containing all of its limit points.
Solution: Lots of exmples: 1). The empty set. 2). All of \mathbb{R}. 3). The point $\{0\} \in \mathbb{R}$. $4)$. The closed interval $\{0 \leq x \leq 1$ in $\mathbb{R}\}$.

A-3. Distinct points $\left\{x_{j}, j=1,2,3, \ldots\right\}$ with $x_{i} \neq x_{j}$ for $i \neq j$ that is compact.
Solution: The following subset of the real numbers: $\{0\} \cup\left\{\frac{1}{n}, n=1,2,3, \ldots\right\}$.

A-4. Closed and bounded but not compact.
Solution: The closed unit ball $\|x\| \leq 1$ in ℓ_{2}. The standard basis vectors $e_{1}=(1,0,0, \ldots)$, $e_{2}=(0,1,0,0, \ldots)$, etc have no convergent subsequence.
Another example: the real numbers $\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$ with the discrete metric: $d(x, y)=1$ for $x \neq y, d(x, x)=0$.

Part B: Classify sets (20 points) For each of the following sets, circle the listed properties it has:
a) $\left\{1+\frac{1}{n} \in \mathbb{R}, n=1,2,3, \ldots\right\}$ open closed bounded compact countable
b) $\{1\} \cup\left\{1+\frac{1}{n} \in \mathbb{R}, n=1,2,3, \ldots\right\}$

| | open | closed | bounded | compact | countable |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| c) $\left\{(x, y) \in \mathbb{R}^{2}: 0<y \leq 1\right\}$ | open | closed | bounded | compact | countable |
| d) $\left\{(x, y) \in \mathbb{R}^{2}: x=0\right\}$ | open | closed | bounded | compact | countable |

e) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\} \quad$ open closed bounded compact countable
f) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$
open

bounded compact countable
g) $\begin{array}{ll}\left\{(x, y) \in \mathbb{R}^{2}: y>x^{2}\right\} & \text { open }\end{array}$
h) $\left\{(k, n) \in \mathbb{R}^{2}: k, n\right.$ any positive integers $\}$
open closed bounded compact countable

Part C: Traditional Problems (4 problems, 20 points each)
$\mathrm{C}-1$. In \mathbb{R}, if $a_{n} \rightarrow A$ and $b_{n} \rightarrow B$, show that the product $a_{n} b_{n} \rightarrow A B$.
Solution: Let $p_{n}=a_{n}-A \rightarrow 0, q_{n}=b_{n}-B \rightarrow 0$. Then

$$
a_{n} b_{n}=\left(p_{n}+A\right)\left(q_{n}+B\right)=p_{n} q_{n}+A q_{n}+B p_{n}+A B .
$$

Using that for convergent sequences x_{n} and y_{n} we know $\lim \left(x_{n}+y_{n}\right)=\lim x_{n}+\lim y_{n}$ and $\lim \left(c x_{n}\right)=c \lim x_{n}$, we see that it is enough to show that $p_{n} q_{n} \rightarrow 0$. Given $\epsilon>0$ (which we may assume satisfies $\epsilon<1$), pick N so that if $n>N$ then $\left|p_{n}\right|<\epsilon$ and $\left|q_{n}\right|<\epsilon$. Consequently $\left|p_{n} q_{n}\right|<\epsilon^{2}<\epsilon$.

C-2. Given a real sequence $\left\{a_{k}\right\}$, let $C_{n}=\frac{a_{1}+\cdots+a_{n}}{n}$ be the sequence of averages (arithmetic mean). If a_{k} converges to A, show that the averages C_{n} also converge to A.

Solution: Letting $B_{n}=a_{n}-A \rightarrow 0$, I could reduce to the case $A=0$. Instead, for variety I proceed directly. Note that

$$
C_{n}-A=\frac{a_{1}+\cdots+a_{n}}{n}-A=\frac{\left(a_{1}-A\right)+\cdots+\left(a_{n}-A\right)}{n}
$$

Given any $\epsilon>0$, pick N so that if $n>N$ then $\left|a_{n}-A\right|<\epsilon$. Then write

$$
C_{n}-A=\underbrace{\frac{\left(a_{1}-A\right)+\cdots+\left(a_{N}-A\right)}{n}}_{I_{n}}+\underbrace{\frac{\left(a_{N+1}-A\right)+\cdots+\left(a_{n}-A\right)}{n}}_{J_{n}} .
$$

Now

$$
\left|J_{n}\right|<\frac{[n-(N+1)] \epsilon}{n} \leq \frac{n \epsilon}{n}=\epsilon \quad \text { for any } \quad n>N .
$$

We will show that by choosing n even larger, we can make $\left|I_{n}\right|<\epsilon$. Since the sequence $a_{n}-A$ converges, it is bounded, so for some M we have $\left|a_{n}-A\right|<M$. Thus for n sufficientnly large

$$
\left|I_{n}\right|<\frac{N M}{n}<\epsilon .
$$

Consequently, $\left|C_{n}-A\right| \leq\left|I_{n}\right|+\left|J_{n}\right|<2 \epsilon$.

C-3. Let $K_{j}, j=1,2, \ldots$ be compact sets in a metric space. Give a proof or counterexample for each of the following assertions.
a) $K_{1} \cap K_{2}$ is compact.

Solution: True. Since compact sets are closed, then $K_{1} \cap K_{2}$ is a closed subset of the compact set K_{1}, and hence compact.
b) $K_{1} \cup K_{2}$ is compact.

Solution: True. Let $\left\{U_{\alpha}\right\}$ be any open cover of $K_{1} \cup K_{2}$. A finite number of these, say $\left\{V_{1}, \ldots, V_{k}\right\}$, cover K_{1}, and $\left\{W_{1}, \ldots, W_{n}\right\}$, cover K_{2}. Then $\left\{V_{1} \cup \ldots \cup V_{k} \cup W_{1} \cup \ldots \cup W_{n}\right\}$ is the desired finite cover of $K_{1} \cup K_{2}$.
c) $\bigcup_{j=1}^{\infty} K_{j}$ is compact.

Solution: Counterexample. The non-negative real numbers $\{x \geq 0\}$ is the union of the compact sets (closed intervals) $K_{j}=\{j-1 \leq x \leq j ; j=1,2, \ldots\}$. Since this set is not bounded, it is not compact.

C-4. In a complete metric space M, let $d(x, y)$ denote the distance. Assume there is a constant $0<c<1$ so that the sequence x_{k} satisfies

$$
d\left(x_{n+1}, x_{n}\right)<c d\left(x_{n}, x_{n-1}\right) \text { for all } \quad n=1,2, \ldots
$$

a) Show that $d\left(x_{n+1}, x_{n}\right)<c^{n} d\left(x_{1}, x_{0}\right)$.

Solution: Since $d\left(x_{2}, x_{1}\right)<c d\left(x_{1}, x_{0}\right)$, then

$$
d\left(x_{3}, x_{2}\right)<c d\left(x_{2}, x_{1}\right)<c^{2} d\left(x_{1}, x_{0}\right) .
$$

Using this,

$$
d\left(x_{4}, x_{3}\right)<c d\left(x_{3}, x_{2}\right)<c^{3} d\left(x_{1}, x_{0}\right) .
$$

The induction to the general case is obvious.
b) Show that the $\left\{x_{k}\right\}$ is a Cauchy sequence.

Solution: Say $n>k$. Then using the previous part and that $0<c<1$

$$
\begin{aligned}
d\left(x_{n}, x_{k}\right) & \leq d\left(x_{n}, x_{n-1}\right)+\ldots+d\left(x_{k+1}, x_{k}\right) \\
& \leq\left(c^{n-1}+c^{n-2}+\cdots+c^{k}\right) d\left(x_{1}, x_{0}\right) \\
& \leq\left(c^{k}\left(1+c+c^{2}+c^{3}+\ldots\right) d\left(x_{1}, x_{0}\right)=\frac{c^{k}}{1-c} d\left(x_{1}, x_{0}\right) .\right.
\end{aligned}
$$

Pick N so that $c^{N}<\epsilon$. If $n>k>N$ then

$$
d\left(x_{n}, x_{k}\right) \leq<\frac{\epsilon}{1-c} d\left(x_{1}, x_{0}\right) .
$$

c) Show that there is some $p \in M$ so that $\lim _{n \rightarrow \infty} x_{k}=p$.

Solution: Since the metric space is complete, there is a point p in the metric space to which the Cauchy sequence x_{k} converges.

