
Math 508 Exam 1 Jerry L. Kazdan
October 12, 2006 12:00 – 1:20

Directions This exam has three parts, Part A has 4 problems asking for Examples (20 points, 5
points each), Part B asks you to describe some sets (20 points), Part C has 4 traditional problems
(60 points, 15 points each).
Closed book, no calculators – but you may use one 3′′ × 5′′ card with notes.

Part A: Examples (4 problems, 5 points each). Give an example of an infinite set in a metric
space (perhaps R) with the specified property.

A–1. Bounded with exactly two limit points.

Solution: The set {(−1)n(1 + 1

n
), n = 1, 2, 3, . . .} in R .

A–2. Containing all of its limit points.

Solution: Lots of exmples: 1). The empty set. 2). All of R . 3). The point {0} ∈ R .
4). The closed interval {0 ≤ x ≤ 1 in R} .

A–3. Distinct points {xj , j = 1, 2, 3, . . .} with xi 6= xj for i 6= j that is compact.

Solution: The following subset of the real numbers: {0} ∪ { 1

n
, n = 1, 2, 3, . . .} .

A–4. Closed and bounded but not compact.

Solution: The closed unit ball ‖x‖ ≤ 1 in `2 . The standard basis vectors e1 = (1, 0, 0, . . .),
e2 = (0, 1, 0, 0, . . .), etc have no convergent subsequence.

Another example: the real numbers {x ∈ R | 0 ≤ x ≤ 1} with the discrete metric: d(x, y) = 1
for x 6= y , d(x, x) = 0.

Part B: Classify sets (20 points) For each of the following sets, circle the listed properties it
has:

a) {1 + 1

n
∈ R, n = 1, 2, 3, . . .} open closed bounded compact countable

b) {1} ∪ {1 + 1

n
∈ R, n = 1, 2, 3, . . .}

open closed bounded compact countable

c) {(x, y) ∈ R
2 : 0 < y ≤ 1} open closed bounded compact countable

d) {(x, y) ∈ R
2 : x = 0} open closed bounded compact countable
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e) {(x, y) ∈ R
2 : x2 + y2 = 1} open closed bounded compact countable

f) {(x, y) ∈ R
2 : x2 + y2 ≤ 1} open closed bounded compact countable

g) {(x, y) ∈ R
2 : y > x2} open closed bounded compact countable

h) {(k, n) ∈ R
2 : k, n any positive integers}

open closed bounded compact countable

Part C: Traditional Problems (4 problems, 20 points each)

C–1. In R , if an → A and bn → B , show that the product anbn → AB .

Solution: Let pn = an − A → 0, qn = bn − B → 0. Then

anbn = (pn + A)(qn + B) = pnqn + Aqn + Bpn + AB.

Using that for convergent sequences xn and yn we know lim(xn + yn) = limxn + lim yn and
lim(cxn) = c limxn , we see that it is enough to show that pnqn → 0. Given ε > 0 (which we
may assume satisfies ε < 1), pick N so that if n > N then |pn| < ε and |qn| < ε . Consequently
|pnqn| < ε2 < ε .

C–2. Given a real sequence {ak} , let Cn =
a1 + · · · + an

n
be the sequence of averages (arithmetic

mean). If ak converges to A , show that the averages Cn also converge to A .

Solution: Letting Bn = an − A → 0, I could reduce to the case A = 0. Instead, for variety I
proceed directly. Note that

Cn − A =
a1 + · · · + an

n
− A =

(a1 − A) + · · · + (an − A)

n

Given any ε > 0, pick N so that if n > N then |an − A| < ε . Then write

Cn − A =
(a1 − A) + · · · + (aN − A)

n
︸ ︷︷ ︸

In

+
(aN+1 − A) + · · · + (an − A)

n
︸ ︷︷ ︸

Jn

.

Now

|Jn| <
[n − (N + 1)]ε

n
≤

nε

n
= ε for any n > N.

We will show that by choosing n even larger, we can make |In| < ε . Since the sequence an−A

converges, it is bounded, so for some M we have |an −A| < M . Thus for n sufficientnly large

|In| <
NM

n
< ε.

Consequently, |Cn − A| ≤ |In| + |Jn| < 2ε .
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C–3. Let Kj , j = 1, 2, . . . be compact sets in a metric space. Give a proof or counterexample for
each of the following assertions.

a) K1 ∩ K2 is compact.

Solution: True. Since compact sets are closed, then K1 ∩ K2 is a closed subset of the
compact set K1 , and hence compact.

b) K1 ∪ K2 is compact.

Solution: True. Let {Uα} be any open cover of K1 ∪ K2 . A finite number of these, say
{V1, . . . , Vk} , cover K1 , and {W1, . . . ,Wn} , cover K2 . Then {V1∪ . . .∪Vk∪W1∪ . . .∪Wn}
is the desired finite cover of K1 ∪ K2 .

c)
⋃

∞

j=1
Kj is compact.

Solution: Counterexample. The non-negative real numbers {x ≥ 0} is the union of the
compact sets (closed intervals) Kj = {j − 1 ≤ x ≤ j; j = 1, 2, . . .} . Since this set is not
bounded, it is not compact.

C–4. In a complete metric space M , let d(x, y) denote the distance. Assume there is a constant
0 < c < 1 so that the sequence xk satisfies

d(xn+1, xn) < cd(xn, xn−1) for all n = 1, 2, . . . .

a) Show that d(xn+1, xn) < cnd(x1, x0).

Solution: Since d(x2, x1) < cd(x1, x0), then

d(x3, x2) < cd(x2, x1) < c2d(x1, x0).

Using this,
d(x4, x3) < cd(x3, x2) < c3d(x1, x0).

The induction to the general case is obvious.

b) Show that the {xk} is a Cauchy sequence.

Solution: Say n > k . Then using the previous part and that 0 < c < 1

d(xn, xk) ≤ d(xn, xn−1) + . . . + d(xk+1, xk)

≤ (cn−1 + cn−2 + · · · + ck) d(x1, x0)

≤ (ck(1 + c + c2 + c3 + . . .) d(x1, x0) =
ck

1 − c
d(x1, x0).

Pick N so that cN < ε . If n > k > N then

d(xn, xk) ≤<
ε

1 − c
d(x1, x0).

c) Show that there is some p ∈ M so that limn→∞ xk = p .

Solution: Since the metric space is complete, there is a point p in the metric space to
which the Cauchy sequence xk converges.
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