Directions This exam has two parts, Part A has 3 shorter problems (8 points each, so 24 points), Part B has 5 traditional problems (15 points each, so 75 points).
Closed book, no calculators - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes.
Part A: Short Problems (3 problems, 8 points each).
A-1. A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that

$$
\int_{0}^{x} f(t) d t=\cos (x) e^{-x}+C
$$

where C is some constant. Find both $f(x)$ and the constant C.

A-2. A function $h: \mathbb{R} \rightarrow \mathbb{R}$ with two continuous derivatives has the property that $h(0)=2$, $h(1)=0$, and $\mathrm{h}(3)=1$. Prove there is at least one point c in the interval $0<x<3$ where $h^{\prime \prime}(c)>0$ by finding some explicit $m>0$ (such as $m=2 / 3$) with $h^{\prime \prime}(c) \geq m$.

A-3. Say a smooth function $u(x)$ satisfies $u^{\prime \prime}-c(x) u=0$ for $0 \leq x \leq 1$ (here $c(x)$ is some given contunuous function).
If $c(x)>0$ everywhere, show that there is no point where $u(x)$ is both positive and has a local maximum.
If we also knew that $u(0)=0$ and $u(1)=0$, why can we conclude that $u(x)=0$ for all $0 \leq x \leq 1$?

Part B: Traditional Problems (5 problems, 16 points each)
B-1. Given that two functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable at a point $x=c$, prove that their product $h(x)=f(x) g(x)$ is also differentiable at $x=c$.

B-2. Let $\alpha(t)$ and $\beta(s)$ describe smooth curves in \mathbb{R}^{3} that do not intersect. Say the points $p=\alpha\left(t_{0}\right)$ and $q=\beta\left(s_{0}\right)$ minimize the distance between the curves. Show that the line from p to q is perpendicular to both of these curves.

B-3. Compute $\lim _{\lambda \rightarrow \infty} \int_{0}^{1}|\sin (\lambda x)| d x$.
B-4. Consider the linear space S of real sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ with only a finite number of non-zero terms. Let $\|x\|:=\max _{j}\left|x_{j}\right|$ (you may use without proof that this is actually a norm). Is this space complete with this norm? Justify your response.

B-5. For any two sets $S, T \subset \mathbb{R}^{n}$ with the usual Euclidean metric, define the distance between these sets as

$$
\operatorname{dist}(S, T)=\inf _{x \in S, y \in T}\|x-y\|
$$

a) Assume that S is compact, T is closed, and their intersection, $S \cap T$, is empty. Prove that there are points $p \in S$ and $q \in T$ with $\operatorname{dist}(S, T)=\|p-q\|$. In particular, $\operatorname{dist}(S, T)>0$.
b) Does the above assertion remain true if S and T are any two disjoint closed subsets of \mathbb{R}^{n} ? Proof or counterexample.

