Math 508 Exam 2 Jerry L. Kazdan
December 8, 2006 12:00 — 1:20

DIRECTIONS This exam has two parts, Part A has 3 shorter problems (8 points each, so 24 points),
Part B has 5 traditional problems (15 points each, so 75 points).
Closed book, no calculators — but you may use one 3” x 5” card with notes.

Part A: Short Problems (3 problems, 8 points each).

A-1. A continuous function f:R — R has the property that
x
/ f(t)dt = cos(z)e ™ + C,
0

where C' is some constant. Find both f(z) and the constant C'.

Solution: Letting x = 0, we find that 0 = 1+ C, so C' = —1. To compute f, use the
fundamental theorem of calculus. Thus take the derivative of both sides

flz) = %[cos(az) e *+(C]=—sin(x)e ¥ —cos(z) e ".

A-2. A function h : R — R with two continuous derivatives has the property that h(0) = 2,
h(1) = 0, and h(3)=1. Prove there is at least one point ¢ in the interval 0 < z < 3 where
h"(¢) > 0 by finding some ezplicit m > 0 (such as m = 3/2) with h”(¢c) > m.

Solution: By the mean value theorem applied twice, there is some a € (0, 1) and some

b € (1, 3) so that

=-2,  KW0O) = 7“3; — ?(1) = %

h(1) — h(0)

Pla)=——3

Thus, by the mean value theorem again there is some ¢ € (a, b) so that

WOb)—h(a) 2+2 5/2 5
" _ _ 2 = _ Z
hile) = b—a _b—a> 3 6

A-3. Say a smooth function u(z) satisfies u” —c(z)u =0 for 0 <z <1 (here ¢(z) is some given
contunuous function).

If ¢(xz) > 0 everywhere, show that there is no point where u(x) is both positive and has a
local maximum.

If we also knew that u(0) = 0 and u(1) = 0, why can we conclude that u(z) = 0 for all
0<x<1?

Solution: If u has a positive maximum at some point p, then u”(p) < 0 and u(p) > 0.
Consequently u”(p) — ¢(p)u(p) < 0, which contradicts u” — ¢(z)u = 0.

If u(0) = 0 and u(1) = 0 but w is not identically zero, then u must either be positive or
negative somewhere. Say u is positive somewhere (otherwise replace u by —u). Then since u
is continuous on the compact set [0, 1], it has a positive maximum at some interior point. But
we saw just above that this can’t happen.



Part B: Traditional Problems (5 problems, 16 points each)

B-1. Given that two functions f: R — R and g : R — R are differentiable at a point * = ¢, prove
that their product h(z) = f(z)g(z) is also differentiable at =z = c.

Solution:.

h(c+k)—h(c) _[flc+k)glc+k)— fle)glc+ k)] + [f(c)g(c+ k) — fc)g(c)]

k k
fle+k)— f(c glc+k)—glc
HeRR) =) g 9t R) =0
k k
Now let £k — 0. Since f and g are both assumed to be differentiable at = = ¢, we see that h

is differentiable there and get the usual formula: h'(c) = f'(¢)g(c) + f(e)g'(c).

B-2. Let a(t) and ((s) describe smooth curves in R? that do not intersect. Say the points
p = a(ty) and ¢ = [(sp) minimize the distance between the curves. Show that the line from p
to ¢ is perpendicular to both of these curves.

Solution:. To avoid square roots, let ( be the square of the distance from «(¢) to the point
B(s), so
Q(s,t) = [la(t) = B(s)II” = (a(t) — B(s), alt) — B(s))

Then Q(t,s) has its minimum at (%o, so), Consequently both 0Q /0t = 0 and 9Q/Jds = 0 at
(to, 80) . But

0Q / oQ /
5 = 2la(t) = B(s), (1)) and  —= = -2a(t) - B(s), 5(s))-

Evaluated at (to,sp) the first gives «a(tg) — 3(so) L o/(to), whiile the second gives the other
othogonality, «a(tg) — B(so) L B'(s0)-

1
B-3. Compute /\hm |sin(Az)| dz.

Solution: First make the substitution ¢ = Az. and say nm < A < (n+ 1)m. Since |sin(At)] is
periodic with period 7, then the integral becomes

1 A 1 ™ 2T nm A
—/ |sint| dt =— / +/ +---+/ +/ |sint| dt
A 0 A 0 T (n—1)m nm
1 T A 2 1 A
=3 [n/o sintdt—i—/m\sint]dt] = Tn + X/mlsinﬂdt.

Because nm < XA < (n+ 1), then A\/n — 7 so 2n/\ — 2/m. Also

1 /A 1 (n+1)m
X/|Sintdt<X/ dt:§—>0.

™

Consequently the limit is 2/7.



B-4. Consider the linear space S of real sequences x = (z1,x2,...) with only a finite number of
non-zero terms. Let ||z| := max;|z;| (you may use without proof that this is actually a norm).
Is this space complete with this norm? Justify your response.

Solution:. This space is not complete since a Cauchy sequence can tend to something with
infinitely many non-zero terms. For instance, let

Xp=(1,3%,...,£,0,0,...),

which has k non-zero terms. If n > k > N, then

Xn—=Xe =00, .., 57 730 5 0,0,..),
SO
1 = Xill = 7 < &-
n k E+1 N

Thus the X are a Cauchy sequence whose terms have an increasing number of non-zero
elements, so it can’t converge to an element in S'.

B-5. For any two sets S,7 C R"™ with the usual Euclidean metric, define the distance between

these sets as

dist(S,T) = _inf_ Jlo ~y]|

a) Assume that S is compact, T is closed, and their intersection, SNT', is empty. Prove that
there are points p € S and g € T" with dist(S,T") = ||p —¢||. In particular, dist(S,7") > 0.

b) Does the above assertion remain true if S and 7' are any two disjoint closed subsets of
R"™? Proof or counterexample.

Solution: a). Let m = :1gnf THJJ—yH Then there are z; € S and y; € T so that ||z; —y;|| —
Te €

m. We can assume that ||z; — y;|| < m + 1.

Since S is compact, the x; have a convergent subsequence, z;; to some p € S. To prove the
corresponding assertion about the y;, we first show they are bounded. Because S is compact,
it lies in some ball, ||z|| < R. Therefore

lyill < llyi — zil| + ||z < m+ 14+ R.

Consider the y;; corresponding to the z;;. Since it is bounded, it too has a convergent sub-
sequence, ¥; - Because T is closed, this subsequence converges to some point ¢ € T'. Using
[@i;, — iy, || = m, we see that

lp = qll = lim||zi; —yi, [| =m.
Because S and T are disjoint, p # g so m = ||p — ¢|| > 0.
b). The assertion is false if we only assume the sets S and T are closed. One example is

S ={(z,y) eR?|y > Hle} and T = {(z,y) € R?|y < 0}. Then dist (S, T) = 0. It is easy to

cook up many examples.




In a general metric space, the assertion in part a) is false, even if you also assume 7' bounded.

For example, in (5, let S = {0} (the origin) and 7' = {(1+ 1)e,, n = 1,2,3,...} where e,
e2, €3, ...are the standard basis vectors. Then dist (S, T') = 1 although there are no points
p€ S, g€ T with ||p—¢q|| = 1. The problem is that although 7' is closed and bounded, it has
no convergent subsequence.

In a general metric space, the assertion in part a) is true if both S and T are compact since a
continuous function on a compact set achieves its minimum. One can use this to give a slightly

different proof of part a) as follows. As observes above, if m = }gnf THx — yl|, then to find
rES,Yye

the minimum distance, we need only use the points y € T' that are within distance m +1 from
S, that is,
Q:={yeT||dz,y) <m-+1forall xS}

But since S is compact, it is bounded, so @ is bounded (and closed). Since @ € R", it is
compact. Thus for x € S and y € @, the function d(z,y) is a continuous function on a
compace set so it achieves its minimum at some point of the set. Because the sets are disjoint,
this minimum is strictly positive.



