
Math 508 Exam 2 Jerry L. Kazdan
December 8, 2006 12:00 – 1:20

Directions This exam has two parts, Part A has 3 shorter problems (8 points each, so 24 points),
Part B has 5 traditional problems (15 points each, so 75 points).
Closed book, no calculators – but you may use one 3′′ × 5′′ card with notes.

Part A: Short Problems (3 problems, 8 points each).

A–1. A continuous function f : R → R has the property that
∫ x

0
f(t) dt = cos(x) e−x + C,

where C is some constant. Find both f(x) and the constant C .

Solution: Letting x = 0, we find that 0 = 1 + C , so C = −1. To compute f , use the
fundamental theorem of calculus. Thus take the derivative of both sides

f(x) =
d

dx
[cos(x) e−x + C] = − sin(x) e−x − cos(x) e−x.

A–2. A function h : R → R with two continuous derivatives has the property that h(0) = 2,
h(1) = 0, and h(3)=1. Prove there is at least one point c in the interval 0 < x < 3 where
h′′(c) > 0 by finding some explicit m > 0 (such as m = 3/2) with h′′(c) ≥ m .

Solution: By the mean value theorem applied twice, there is some a ∈ (0, 1) and some
b ∈ (1, 3) so that

h′(a) =
h(1) − h(0)

1 − 0
= −2, h′(b) =

h(3) − h(1)

3 − 1
=

1

2
.

Thus, by the mean value theorem again there is some c ∈ (a, b) so that

h′′(c) =
h′(b) − h′(a)

b − a
=

1
2 + 2

b − a
>

5/2

3
=

5

6
.

A–3. Say a smooth function u(x) satisfies u′′ − c(x)u = 0 for 0 ≤ x ≤ 1 (here c(x) is some given
contunuous function).

If c(x) > 0 everywhere, show that there is no point where u(x) is both positive and has a
local maximum.

If we also knew that u(0) = 0 and u(1) = 0, why can we conclude that u(x) = 0 for all
0 ≤ x ≤ 1?

Solution: If u has a positive maximum at some point p , then u′′(p) ≤ 0 and u(p) > 0.
Consequently u′′(p) − c(p)u(p) < 0, which contradicts u′′ − c(x)u = 0.

If u(0) = 0 and u(1) = 0 but u is not identically zero, then u must either be positive or
negative somewhere. Say u is positive somewhere (otherwise replace u by −u). Then since u
is continuous on the compact set [0, 1], it has a positive maximum at some interior point. But
we saw just above that this can’t happen.



Part B: Traditional Problems (5 problems, 16 points each)

B–1. Given that two functions f : R → R and g : R → R are differentiable at a point x = c , prove
that their product h(x) = f(x)g(x) is also differentiable at x = c .

Solution:.

h(c + k) − h(c)

k
=

[f(c + k)g(c + k) − f(c)g(c + k)] + [f(c)g(c + k) − f(c)g(c)]

k

=
f(c + k) − f(c)

k
g(c + k) + f(c)

g(c + k) − g(c)

k

Now let k → 0. Since f and g are both assumed to be differentiable at x = c , we see that h
is differentiable there and get the usual formula: h′(c) = f ′(c)g(c) + f(c)g′(c).

B–2. Let α(t) and β(s) describe smooth curves in R
3 that do not intersect. Say the points

p = α(t0) and q = β(s0) minimize the distance between the curves. Show that the line from p
to q is perpendicular to both of these curves.

Solution:. To avoid square roots, let Q be the square of the distance from α(t) to the point
β(s), so

Q(s, t) = ‖α(t) − β(s)‖2 = 〈α(t) − β(s), α(t) − β(s)〉

Then Q(t, s) has its minimum at (t0, s0), Consequently both ∂Q/∂t = 0 and ∂Q/∂s = 0 at
(t0, s0). But

∂Q

∂t
= 2〈α(t) − β(s), α′(t)〉 and

∂Q

∂s
= −2〈α(t) − β(s), β′(s)〉.

Evaluated at (t0, s0) the first gives α(t0) − β(s0) ⊥ α′(t0), whiile the second gives the other
othogonality, α(t0) − β(s0) ⊥ β′(s0).

B–3. Compute lim
λ→∞

∫ 1

0
|sin(λx)| dx .

Solution: First make the substitution t = λx . and say nπ ≤ λ < (n + 1)π . Since |sin(λt)| is
periodic with period π , then the integral becomes

1

λ

∫ λ

0
|sin t| dt =

1

λ

[

∫ π

0
+

∫ 2π

π

+ · · · +

∫ nπ

(n−1)π
+

∫ λ

nπ

|sin t| dt

]

=
1

λ

[

n

∫ π

0
sin t dt +

∫ λ

nπ

|sin t| dt

]

=
2n

λ
+

1

λ

∫ λ

nπ

|sin t| dt.

Because nπ ≤ λ < (n + 1)π , then λ/n → π so 2n/λ → 2/π . Also

1

λ

∫ λ

nπ

|sin t| dt <
1

λ

∫ (n+1)π

nπ

dt =
π

λ
→ 0.

Consequently the limit is 2/π .
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B–4. Consider the linear space S of real sequences x = (x1, x2, . . .) with only a finite number of
non-zero terms. Let ‖x‖ := maxj |xj| (you may use without proof that this is actually a norm).
Is this space complete with this norm? Justify your response.

Solution:. This space is not complete since a Cauchy sequence can tend to something with
infinitely many non-zero terms. For instance, let

Xk = (1, 1
2 , 1

3 , . . . , 1
k
, 0, 0, . . .),

which has k non-zero terms. If n ≥ k > N , then

Xn − Xk = (0, . . . , 1
k+1 , 1

k+2 , 1
n
, 0, 0, . . .),

so
‖Xn − Xk‖ = 1

k+1 < 1
N

.

Thus the Xk are a Cauchy sequence whose terms have an increasing number of non-zero
elements, so it can’t converge to an element in S .

B–5. For any two sets S, T ⊂ R
n with the usual Euclidean metric, define the distance between

these sets as
dist(S, T ) = inf

x∈S, y∈T
‖x − y‖

a) Assume that S is compact, T is closed, and their intersection, S∩T , is empty. Prove that
there are points p ∈ S and q ∈ T with dist(S, T ) = ‖p− q‖ . In particular, dist(S, T ) > 0.

b) Does the above assertion remain true if S and T are any two disjoint closed subsets of
R

n? Proof or counterexample.

Solution: a). Let m = inf
x∈S, y∈T

‖x−y‖ . Then there are xi ∈ S and yi ∈ T so that ‖xi−yi‖ →

m . We can assume that ‖xi − yi‖ ≤ m + 1.

Since S is compact, the xj have a convergent subsequence, xij to some p ∈ S . To prove the
corresponding assertion about the yi , we first show they are bounded. Because S is compact,
it lies in some ball, ‖x‖ ≤ R . Therefore

‖yi‖ ≤ ‖yi − xi‖ + ‖xi‖ ≤ m + 1 + R.

Consider the yij corresponding to the xij . Since it is bounded, it too has a convergent sub-
sequence, yijk

. Because T is closed, this subsequence converges to some point q ∈ T . Using
‖xijk

− yijk
‖ → m , we see that

‖p − q‖ = lim‖xijk
− yijk

‖ = m.

Because S and T are disjoint, p 6= q so m = ‖p − q‖ > 0.

b). The assertion is false if we only assume the sets S and T are closed. One example is
S = {(x, y) ∈ R

2 | y ≥ 1
1+x2 } and T = {(x, y) ∈ R

2 | y ≤ 0} . Then dist (S, T ) = 0. It is easy to
cook up many examples.
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In a general metric space, the assertion in part a) is false, even if you also assume T bounded.

For example, in `2 , let S = {0} (the origin) and T = {(1 + 1
n
)en, n = 1, 2, 3, . . .} where e1 ,

e2 , e3 , . . . are the standard basis vectors. Then dist (S, T ) = 1 although there are no points
p ∈ S , q ∈ T with ‖p− q‖ = 1. The problem is that although T is closed and bounded, it has
no convergent subsequence.

In a general metric space, the assertion in part a) is true if both S and T are compact since a
continuous function on a compact set achieves its minimum. One can use this to give a slightly
different proof of part a) as follows. As observes above, if m = inf

x∈S, y∈T
‖x − y‖ , then to find

the minimum distance, we need only use the points y ∈ T that are within distance m+1 from
S , that is,

Q := {y ∈ T | | d(x, y) ≤ m + 1 for all x ∈ S}

But since S is compact, it is bounded, so Q is bounded (and closed). Since Q ∈ R
n , it is

compact. Thus for x ∈ S and y ∈ Q , the function d(x, y) is a continuous function on a
compace set so it achieves its minimum at some point of the set. Because the sets are disjoint,
this minimum is strictly positive.
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