Directions This exam has two parts, Part A has 3 shorter problems (8 points each, so 24 points), Part B has 5 traditional problems (15 points each, so 75 points).
Closed book, no calculators - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes.
Part A: Short Problems (3 problems, 8 points each).
A-1. A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that

$$
\int_{0}^{x} f(t) d t=\cos (x) e^{-x}+C
$$

where C is some constant. Find both $f(x)$ and the constant C.
Solution: Letting $x=0$, we find that $0=1+C$, so $C=-1$. To compute f, use the fundamental theorem of calculus. Thus take the derivative of both sides

$$
f(x)=\frac{d}{d x}\left[\cos (x) e^{-x}+C\right]=-\sin (x) e^{-x}-\cos (x) e^{-x}
$$

A-2. A function $h: \mathbb{R} \rightarrow \mathbb{R}$ with two continuous derivatives has the property that $h(0)=2$, $h(1)=0$, and $\mathrm{h}(3)=1$. Prove there is at least one point c in the interval $0<x<3$ where $h^{\prime \prime}(c)>0$ by finding some explicit $m>0$ (such as $m=3 / 2$) with $h^{\prime \prime}(c) \geq m$.

Solution: By the mean value theorem applied twice, there is some $a \in(0,1)$ and some $b \in(1,3)$ so that

$$
h^{\prime}(a)=\frac{h(1)-h(0)}{1-0}=-2, \quad h^{\prime}(b)=\frac{h(3)-h(1)}{3-1}=\frac{1}{2}
$$

Thus, by the mean value theorem again there is some $c \in(a, b)$ so that

$$
h^{\prime \prime}(c)=\frac{h^{\prime}(b)-h^{\prime}(a)}{b-a}=\frac{\frac{1}{2}+2}{b-a}>\frac{5 / 2}{3}=\frac{5}{6} .
$$

A-3. Say a smooth function $u(x)$ satisfies $u^{\prime \prime}-c(x) u=0$ for $0 \leq x \leq 1$ (here $c(x)$ is some given contunuous function).
If $c(x)>0$ everywhere, show that there is no point where $u(x)$ is both positive and has a local maximum.
If we also knew that $u(0)=0$ and $u(1)=0$, why can we conclude that $u(x)=0$ for all $0 \leq x \leq 1 ?$

Solution: If u has a positive maximum at some point p, then $u^{\prime \prime}(p) \leq 0$ and $u(p)>0$. Consequently $u^{\prime \prime}(p)-c(p) u(p)<0$, which contradicts $u^{\prime \prime}-c(x) u=0$.

If $u(0)=0$ and $u(1)=0$ but u is not identically zero, then u must either be positive or negative somewhere. Say u is positive somewhere (otherwise replace u by $-u$). Then since u is continuous on the compact set $[0,1]$, it has a positive maximum at some interior point. But we saw just above that this can't happen.

Part B: Traditional Problems (5 problems, 16 points each)
B-1. Given that two functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable at a point $x=c$, prove that their product $h(x)=f(x) g(x)$ is also differentiable at $x=c$.
Solution:.

$$
\begin{aligned}
\frac{h(c+k)-h(c)}{k} & =\frac{[f(c+k) g(c+k)-f(c) g(c+k)]+[f(c) g(c+k)-f(c) g(c)]}{k} \\
& =\frac{f(c+k)-f(c)}{k} g(c+k)+f(c) \frac{g(c+k)-g(c)}{k}
\end{aligned}
$$

Now let $k \rightarrow 0$. Since f and g are both assumed to be differentiable at $x=c$, we see that h is differentiable there and get the usual formula: $h^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$.

B-2. Let $\alpha(t)$ and $\beta(s)$ describe smooth curves in \mathbb{R}^{3} that do not intersect. Say the points $p=\alpha\left(t_{0}\right)$ and $q=\beta\left(s_{0}\right)$ minimize the distance between the curves. Show that the line from p to q is perpendicular to both of these curves.

Solution:. To avoid square roots, let Q be the square of the distance from $\alpha(t)$ to the point $\beta(s)$, so

$$
Q(s, t)=\|\alpha(t)-\beta(s)\|^{2}=\langle\alpha(t)-\beta(s), \alpha(t)-\beta(s)\rangle
$$

Then $Q(t, s)$ has its minimum at $\left(t_{0}, s_{0}\right)$, Consequently both $\partial Q / \partial t=0$ and $\partial Q / \partial s=0$ at $\left(t_{0}, s_{0}\right)$. But

$$
\frac{\partial Q}{\partial t}=2\left\langle\alpha(t)-\beta(s), \alpha^{\prime}(t)\right\rangle \quad \text { and } \quad \frac{\partial Q}{\partial s}=-2\left\langle\alpha(t)-\beta(s), \beta^{\prime}(s)\right\rangle .
$$

Evaluated at $\left(t_{0}, s_{0}\right)$ the first gives $\alpha\left(t_{0}\right)-\beta\left(s_{0}\right) \perp \alpha^{\prime}\left(t_{0}\right)$, whiile the second gives the other othogonality, $\alpha\left(t_{0}\right)-\beta\left(s_{0}\right) \perp \beta^{\prime}\left(s_{0}\right)$.

B-3. Compute $\lim _{\lambda \rightarrow \infty} \int_{0}^{1}|\sin (\lambda x)| d x$.
Solution: First make the substitution $t=\lambda x$. and say $n \pi \leq \lambda<(n+1) \pi$. Since $|\sin (\lambda t)|$ is periodic with period π, then the integral becomes

$$
\begin{aligned}
\frac{1}{\lambda} \int_{0}^{\lambda}|\sin t| d t & =\frac{1}{\lambda}\left[\int_{0}^{\pi}+\int_{\pi}^{2 \pi}+\cdots+\int_{(n-1) \pi}^{n \pi}+\int_{n \pi}^{\lambda}|\sin t| d t\right] \\
& =\frac{1}{\lambda}\left[n \int_{0}^{\pi} \sin t d t+\int_{n \pi}^{\lambda}|\sin t| d t\right]=\frac{2 n}{\lambda}+\frac{1}{\lambda} \int_{n \pi}^{\lambda}|\sin t| d t .
\end{aligned}
$$

Because $n \pi \leq \lambda<(n+1) \pi$, then $\lambda / n \rightarrow \pi$ so $2 n / \lambda \rightarrow 2 / \pi$. Also

$$
\frac{1}{\lambda} \int_{n \pi}^{\lambda}|\sin t| d t<\frac{1}{\lambda} \int_{n \pi}^{(n+1) \pi} d t=\frac{\pi}{\lambda} \rightarrow 0
$$

Consequently the limit is $2 / \pi$.

B-4. Consider the linear space S of real sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ with only a finite number of non-zero terms. Let $\|x\|:=\max _{j}\left|x_{j}\right|$ (you may use without proof that this is actually a norm). Is this space complete with this norm? Justify your response.

Solution:. This space is not complete since a Cauchy sequence can tend to something with infinitely many non-zero terms. For instance, let

$$
X_{k}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{k}, 0,0, \ldots\right),
$$

which has k non-zero terms. If $n \geq k>N$, then

$$
X_{n}-X_{k}=\left(0, \ldots, \frac{1}{k+1}, \frac{1}{k+2}, \frac{1}{n}, 0,0, \ldots\right),
$$

so

$$
\left\|X_{n}-X_{k}\right\|=\frac{1}{k+1}<\frac{1}{N} .
$$

Thus the X_{k} are a Cauchy sequence whose terms have an increasing number of non-zero elements, so it can't converge to an element in S.

B-5. For any two sets $S, T \subset \mathbb{R}^{n}$ with the usual Euclidean metric, define the distance between these sets as

$$
\operatorname{dist}(S, T)=\inf _{x \in S, y \in T}\|x-y\|
$$

a) Assume that S is compact, T is closed, and their intersection, $S \cap T$, is empty. Prove that there are points $p \in S$ and $q \in T$ with $\operatorname{dist}(S, T)=\|p-q\|$. In particular, $\operatorname{dist}(S, T)>0$.
b) Does the above assertion remain true if S and T are any two disjoint closed subsets of \mathbb{R}^{n} ? Proof or counterexample.

Solution: a). Let $m=\inf _{x \in S, y \in T}\|x-y\|$. Then there are $x_{i} \in S$ and $y_{i} \in T$ so that $\left\|x_{i}-y_{i}\right\| \rightarrow$ m. We can assume that $\left\|x_{i}-y_{i}\right\| \leq m+1$.
Since S is compact, the x_{j} have a convergent subsequence, $x_{i_{j}}$ to some $p \in S$. To prove the corresponding assertion about the y_{i}, we first show they are bounded. Because S is compact, it lies in some ball, $\|x\| \leq R$. Therefore

$$
\left\|y_{i}\right\| \leq\left\|y_{i}-x_{i}\right\|+\left\|x_{i}\right\| \leq m+1+R .
$$

Consider the $y_{i_{j}}$ corresponding to the $x_{i_{j}}$. Since it is bounded, it too has a convergent subsequence, $y_{i_{j_{k}}}$. Because T is closed, this subsequence converges to some point $q \in T$. Using $\left\|x_{i_{j_{k}}}-y_{i_{j_{k}}}\right\| \rightarrow m$, we see that

$$
\|p-q\|=\lim \left\|x_{i_{j_{k}}}-y_{i_{j_{k}}}\right\|=m .
$$

Because S and T are disjoint, $p \neq q$ so $m=\|p-q\|>0$.
b). The assertion is false if we only assume the sets S and T are closed. One example is $S=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y \geq \frac{1}{1+x^{2}}\right.\right\}$ and $T=\left\{(x, y) \in \mathbb{R}^{2} \mid y \leq 0\right\}$. Then dist $(S, T)=0$. It is easy to cook up many examples.

In a general metric space, the assertion in part a) is false, even if you also assume T bounded. For example, in ℓ_{2}, let $S=\{0\}$ (the origin) and $T=\left\{\left(1+\frac{1}{n}\right) e_{n}, n=1,2,3, \ldots\right\}$ where e_{1}, e_{2}, e_{3}, \ldots are the standard basis vectors. Then $\operatorname{dist}(S, T)=1$ although there are no points $p \in S, q \in T$ with $\|p-q\|=1$. The problem is that although T is closed and bounded, it has no convergent subsequence.

In a general metric space, the assertion in part a) is true if both S and T are compact since a continuous function on a compact set achieves its minimum. One can use this to give a slightly different proof of part a) as follows. As observes above, if $m=\inf _{x \in S, y \in T}\|x-y\|$, then to find the minimum distance, we need only use the points $y \in T$ that are within distance $m+1$ from S, that is,

$$
Q:=\{y \in T \| d(x, y) \leq m+1 \text { for all } x \in S\}
$$

But since S is compact, it is bounded, so Q is bounded (and closed). Since $Q \in \mathbb{R}^{n}$, it is compact. Thus for $x \in S$ and $y \in Q$, the function $d(x, y)$ is a continuous function on a compace set so it achieves its minimum at some point of the set. Because the sets are disjoint, this minimum is strictly positive.

