Problem Set 1

DUE: Thurs. Sept. 14, 2006. Late papers accepted until 1:00 Friday.

Math508, Fall 2006

Jerry L. Kazdan

Many of these problems are from the Rudin text.

- 1. a) If $r \neq 0$ is a rational number and x is irrational, show that both r + x and rx are *irrational*.
 - b) Prove that there is no rational number whose square is 12.
- 2. (p. 22 #6) The point of this problem is, for any real b > 1 and any real x to define b^x . So far we can only do this for integers x. First we extend this to rational x and then to all real x.

Fix b > 1. Let m, n, p, q be integers with n > 0, q > 0. Set r = m/n = p/q.

- a) Prove that $(b^m)^{1/n} = (b^p)^{1/q}$. Thus, it makes sense to define $b^r = (b^m)^{1/n}$.
- b) If *r* and *s* are rational, prove that $b^{r+s} = b^r b^s$.
- c) If dx is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \le x$. Prove that for r rational

$$b^r = \sup B(r).$$

Hence it makes sense to *define* $b^x = \sup B(x)$ for all real x.

- d) With this definition, prove that for all real x, y: $b^{x+y} = b^x b^y$.
- 3. (p. 22 #7) If b > 1 and y > 0, prove there is a unique real x such that $b^x = y$ by completing the following outline. This x is called the *logarithm of y to the base b*.
 - a) For any positive integer *n*, show that $b^n 1 \ge n(b-1)$.
 - b) Hence $b 1 \ge n(b^{1/n} 1)$.
 - c) If t > 1 and n > (b-1)/(t-1), show that $b^{1/n} < t$.
 - d) If w is such that $b^w < y$, show that $b^{w+(1/n)} < y$ for sufficiently large n. [HINT: Apply the previous part with $t = y \cdot b^{-w}$].
 - e) If $b^w > y$, show that $b^{w-(1/n)} > y$ for all sufficiently large integers *n*.
 - f) Let A be the set of all w such that $b^w < y$. Show that the real number $x := \sup A$ satisfies $b^x = y$.
 - g) Prove that this *x* is unique.

- 4. Show that no order can be defined that makes the field of complex numbers into an ordered fielf. [HINT: -1 is the square of a complex number].
- 5. (p. 23 #12, #13) Let z, w, $z_1, ..., z_n$ be complex numbers
 - a) Show that (*triangle inequality*)

$$|z_1+\cdots+z_n| \le |z_1|+\cdots+|z_n|.$$

- b) Show that $||z| |w|| \le |z w|$.
- 6. (p. 23 #19) Suppose $a \in \mathbb{R}^k$, $b \in \mathbb{R}^k$, and $x \in \mathbb{R}^k$. Find all $c \in \mathbb{R}^k$ and r > 0 (depending on *a* and b) such that |x-a| = 2|x-b| is satisfied if and only if |x-c| = r. [ANSWER: 3c = 4b a, 3r = 2|b-a|].

[Last revised: September 12, 2006]