Problem Set 1

DuE: Thurs. Sept. 14, 2006. Late papers accepted until 1:00 Friday.

Math508, Fall 2006
Jerry L. Kazdan Many of these problems are from the Rudin text.

1. a) If $r(\neq 0)$ is a rational number and x is irrational, show that both $r+x$ and $r x$ are irrational.
b) Prove that there is no rational number whose square is 12 .
2. (p. 22 \#6) The point of this problem is, for any real $b>1$ and any real x to define b^{x}. So far we can only do this for integers x. First we extend this to rational x and then to all real x.
Fix $b>1$. Let m, n, p, q be integers with $n>0, q>0$. Set $r=m / n=p / q$.
a) Prove that $\left(b^{m}\right)^{1 / n}=\left(b^{p}\right)^{1 / q}$. Thus, it makes sense to define $b^{r}=\left(b^{m}\right)^{1 / n}$.
b) If r and s are rational, prove that $b^{r+s}=b^{r} b^{s}$.
c) Ifd x is real, define $B(x)$ to be the set of all numbers b^{t}, where t is rational and $t \leq x$. Prove that for r rational

$$
b^{r}=\sup B(r) .
$$

Hence it makes sense to define $b^{x}=\sup B(x)$ for all real x.
d) With this definition, prove that for all real $x, y: b^{x+y}=b^{x} b^{y}$.
3. (p. 22 \#7) If $b>1$ and $y>0$, prove there is a unique real x such that $b^{x}=y$ by completing the following outline. This x is called the logarithm of y to the base b.
a) For any positive integer n, show that $b^{n}-1 \geq n(b-1)$.
b) Hence $b-1 \geq n\left(b^{1 / n}-1\right)$.
c) If $t>1$ and $n>(b-1) /(t-1)$, show that $b^{1 / n}<t$.
d) If w is such that $b^{w}<y$, show that $b^{w+(1 / n)}<y$ for sufficiently large n. [HINT: Apply the previous part with $\left.t=y \cdot b^{-w}\right]$.
e) If $b^{w}>y$, show that $b^{w-(1 / n)}>y$ for all sufficiently large integers n.
f) Let A be the set of all w such that $b^{w}<y$. Show that the real number $x:=\sup A$ satisfies $b^{x}=y$.
g) Prove that this x is unique.
4. Show that no order can be defined that makes the field of complex numbers into an ordered fielf. [HINT: -1 is the square of a complex number].
5. (p. 23 \#12, \#13) Let $z, \mathrm{w}, z_{1}, \ldots, z_{n}$ be complex numbers
a) Show that (triangle inequality)

$$
\left|z_{1}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\cdots+\left|z_{n}\right| .
$$

b) Show that $||z|-|w|| \leq|z-w|$.
6. (p. 23\#19) Suppose $a \in \mathbb{R}^{k}, b \in \mathbb{R}^{k}$, and $x \in \mathbb{R}^{k}$. Find all $c \in \mathbb{R}^{k}$ and $r>0$ (depending on a and b) such that $|x-a|=2|x-b|$ is satisfied if and only if $|x-c|=r$. [ANSWER: $3 c=4 b-a, 3 r=2|b-a|]$.
[Last revised: September 12, 2006]

