Problem Set 2

Due: Tues. Sept. 26, 2006. Late papers accepted until 1:00 Wednesday.

Math 508, Fall 2006

Jerry L. Kazdan

1. (Rudin, p. 43 \#2) A complex number algebraic if it is a root of a polynomial $a_{0} z^{n}+$ $\cdots+a_{n}$ whose coeffients are all integers. Prove that the set of all algebraic numbers is countable. [HINT: For every positive integer N there are only finitely many equations with $n+\left|a_{0}\right|+\cdots+\left|a_{n}\right|=N$.]
2. (Rudin, p. 43 \#5) Construct a bounded set of real numbers with exactly three limit points.
3. (Rudin, p. 43 \#6) Let E^{\prime} be the set of limit points of a set E in a metric space. Show that E^{\prime} is closed.
4. (Rudin, p. 43 \#10) Let X be any infinite set and for $p, q \in X$ define the function

$$
d(p, q)= \begin{cases}1 & \text { if } p \neq q \\ 0 & \text { if } p=q\end{cases}
$$

Prove that this is a metric (although it is not very interesting). Which subsets are open? closed? compact?
5. (Rudin, p. 45 \#22) If x and y are real numbers, define
$d_{1}(x, y)=(x-y)^{2} ; \quad d_{2}(x, y)=\sqrt{|x-y|} ; \quad d_{3}(x, y)=\left|x^{2}-y^{2}\right| ;$
$d_{4}=|x-2 y| ; \quad d_{5}=\frac{|x-y|}{1+|x-y|}$.
Which of these define metrics? Justify your assertions.
6. (Rudin, p. 44 \#20) Are the closures and interiors of connected sets always connected? [Look at subsets of \mathbb{R}^{2}.]
7. (Rudin, p. 45 \#22) A metric space is called separable if it contains a countable dense subset. Show that \mathbb{R}^{2} is separable. [Hint: Consider the set of points whose coordinates are rational.]
8. Define two real numbers x and y to be equal if $|x-y|$ is an integer, thus we have a topological circle whose circumference is one.
Let α be an irrational real number, $0<\alpha<1$ and consider its integer multiples, α, $2 \alpha, 3 \alpha \ldots$. Show that this set is dense in $0 \leq x \leq 1$.
[Last revised: September 24, 2006]

