Homework Set 6

DuE: Thurs. Nov. 2, 2006. Late papers accepted until 1:00 Friday.

Math 508, Fall 2006

Jerry Kazdan

1. If $L: \ell_{2} \rightarrow \ell_{2}$ is defined by $L X:=\left(c_{1} x_{1}, c_{2} x_{2}, c_{3} x_{3}, \ldots\right)$, where c_{j} is a bounded sequence, is L is bounded? Proof or counterexample.
2. Show that a linear map $L: V \rightarrow W$ between normed vector spaces V and W is continuous at any point X_{0} if and only if L is continuous at the origin.
3. [CONTINUATION] Show that a linear map $L: V \rightarrow W$ is continuous if and only if it is bounded.
4. Let \mathcal{M} and \mathcal{N} be metric spaces and $f: \mathcal{M} \rightarrow \mathcal{N}$ be a continuous map. Say $f: p \mapsto q$ and $r \in \mathcal{N}$ with $r \neq q$. Show there is some neighborhood of p whose image does not contain r. In other words, there is some open set $U \subset \mathscr{M}$ containing p with the property that $r \notin f(U)$.
5. Let f be a continuous map from $[0,1]$ to itself. Show that f has at least one fixed point, that is, a point c so that $f(c)=c$.
6. Show that at any time there are at least two diamentically opposite points on the equator of the earth with the same temperature.
7. [Rudin, p. 98 \# 3]. Let \mathscr{M} be a metric space and $f: \mathscr{M} \rightarrow \mathbb{R}$ a continuous function. Denote by $Z(f)$ the zero set of f. These are the points $p \in \mathcal{M}$ where f is zero, $f(p)=0$.
a) Show that $Z(f)$ is a closed set.
b) [See also Rudin, p. 101 \#20] Given any set $E \in \mathscr{M}$, the distance of a point x to E is defined by

$$
h(x)=\rho_{E}(x):=\inf _{z \in E} d(x, z) .
$$

Show that h is a uniformly continuous function.
c) Use the previous part to show that given any closed set $E \in \mathcal{M}$, there is a continuous function that is zero on E and positive elsewhere.
8. [Rudin, p. 98 \# 4]. Let f and g be continuous mappings of a metric space X into a metric space Y and let E be a dense subset of X.
a) Prove that $f(E)$ is dense in $f(X)$.
b) If $g(p)=f(p)$ for all $p \in E$, prove that $g(p)=f(p)$ for all points p in X. Thus, a continuous function is determined by its values in a dense subset of its domain.
9. [Rudin, p. 99\#7]. For points $(x, y) \neq(0,0) \in \mathbb{R}^{2}$, define

$$
f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}} \quad \text { and } \quad g(x, y)=\frac{x y^{2}}{x^{2}+y^{6}}
$$

while define $f(0,0)=0$ and $g(0,0)=0$.
a) Show that f is bounded in \mathbb{R}^{2} but not continuous at the origin, while g is unbounded in every neighborhood of the origin and hence also not continuous there.
b) Let $S \in \mathbb{R}^{2}$ be any straight line through the origin. Show that if the points (x, y) are stricted to lie on S, then both $f(x, y)$ and $g(x, y)$ are continuous. Moral: It can be misleading to understand a function by only examining it on straight lines.
10. [Rudin, p. 99\#8]. Let $E \subset \mathbb{R}$ be a set and $f: E \rightarrow \mathbb{R}$ be uniformly continuous.
a) If E is a bounded set, show that $f(E)$ is a bounded set.
b) If E is not bounded, give an example showing that $f(E)$ might not be bounded.
11. [Rudin, p. 99 \# 13 or \#11] extension by continuity Let X be a metric space, $E \subset X$ a dense subset, and $f: E \rightarrow \mathbb{R}$ a uniformly continuous function. Show that f has a unique continuous extension to all of X. That is, there is a unique continuous function $g: X \rightarrow \mathbb{R}$ with the property that $g(p)=f(p)$ for all $p \in X$. [REMARK: One generalize this by replacing \mathbb{R} by any complete metric space.]
12. [Rudin, p. 101 \# 23]. A real-valued function $f:(a, b) \rightarrow \mathbb{R}$ is called convex if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) \text { for all } x, y \in(a, b) \text { and } 0<t<1
$$

a) Prove that every convex function is continuous.
b) Prove that every increasing convex function of a convex function is convex. Example: Assuming e^{x} is convex (it is), if f is convex then so is $e^{f(x)}$.
13. [Rudin, p. 101 \# 24]. [CONTINUATION] Assume that $f:(a, b) \rightarrow \mathbb{R}$ is continuous and has the property that

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \quad \text { for all } \quad x, y \in(a, b)
$$

Prove that f is convex. [REMARK: One can use this to give a short proof of the arithmetic-geometric mean inequality. Homework Set 3 \#10].

