Homework Set 8

Due: Thurs. Nov. 16, 2006. Late papers accepted until 1:00 Friday.

Math 508, Fall 2006

Jerry Kazdan

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Let $\mathbf{r}(t)$ describe a smooth curve in \mathbb{R}^{3} and let \mathbf{V} be a fixed vector. If $\mathbf{r}^{\prime}(t)$ is perpendicular to \mathbf{V} for all t and if $\mathbf{r}(0)$ is perpendicular to \mathbf{V}, show that $\mathbf{r}(t)$ is perpendicular to \mathbf{V} for all t.
2. A diffeomorphism is a smooth invertable map whose inverse map is also smooth.
a) Find a diffeomorphism $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$, where \mathbb{R}_{+}is the half-line: $\mathbb{R}_{+}=\{x \in \mathbb{R}|x\rangle$ $0\}$.
b) Find a diffeomorphism $g: \mathbb{R} \rightarrow \Omega$, where Ω is the interval: $\Omega=\{x \in \mathbb{R} \mid 0<x<$ $1\}$.
c) Find a diffeomorphism $F: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}^{2}$, where \mathbb{R}_{+}^{2} is the upper half-plane: $\mathbb{R}_{+}^{2}=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$.
d) Find a diffeomorphism $G: \mathbb{R}^{2} \rightarrow \Omega$, where Ω is the strip: $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<\right.$ $y<1\}$.
3. Let $f(x)$ be a smooth function for $x \geq 1$ with the property that $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$.
a) Show that $f(n+1)-f(n) \rightarrow 0$ as $n \rightarrow \infty$.
b) Compute $\lim _{n \rightarrow \infty} \sqrt[5]{n+1}-\sqrt[5]{n}$.
4. For x in any finite interval $|x| \leq c$ prove that $\lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{x^{k}}{k!}=e^{x}$ by showing that the remainder in the Taylor series goes to zero.
5. [ERROR IN INTERPOLATION] Let $f:[a, b] \rightarrow \mathbb{R}$ be a smooth function.
a) Let $g(x)$ be the straight line with the property that $g(a)=f(a)$ and $g(b)=f(b)$. For any point $c \in[a, b]$ obtain an estimate for the error: $f(c)-g(c)$.
REMARK: Your estimate will involve $f^{\prime \prime}(z)$ for some point $z \in[a, b]$. The estimate is related to the procedure used to find the error in a Taylor polynomial.

Hint: Define the constant M by $f(c)=g(c)+M(c-a)(c-b)$. Then consider the function

$$
\phi(x):=f(x)-g(x)-M(x-a)(x-b) .
$$

b) Let $a=x_{0}<x_{2}<\cdots<x_{k}=b$ and let $g(x)$ be the polynomial of degree k that agrees with f at these $k+1$ points, so $g\left(x_{j}\right)=f\left(x_{j}\right), j=0,1, \ldots, k$. Obtain an estimate for the error, $f(c)-g(c)$, for any $c \in[a, b]$
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function.
a) If $f(x) \geq 0$ and $\int_{0}^{1} f(x) d x=0$, prove that $f(x)=0$ for all $x \in[0,1]$.
b) If $\int_{0}^{1} f(x) d x=0$, prove that $f(c)=0$ for some $c \in(0,1)$. Even more, prove that $f(x)$ changes sign somewhere in this interval.
c) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all continuous functions g prove that $f(x)=0$ for all $x \in[0,1]$.
d) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all C^{1} functions g that satisfy $g(0)=g(1)=0$, must it be true that $f(x)=0$ for all $x \in[0,1]$? Proof or counterexample.
7. Let $f(t)$ be a continuous function for $0 \leq t<\infty$. If $\lim _{t \rightarrow \infty} f(t)=c$, show that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f(t) d t=c
$$

8. Let $f(x)$ be a continuous function for $0 \leq x \leq 1$. Evaluate $\lim _{n \rightarrow \infty} n \int_{0}^{1} f(x) x^{n} d x$. (Justify your assertions.)
9. a) If $V=(x, y, z) \in \mathbb{R}^{3}$ and $p \geq 1$, define $\|V\|_{p}:=\left[|x|^{p}+|y|^{p}+|z|^{p}\right]^{1 / p}$. Show that $\lim _{p \rightarrow \infty}\|V\|_{p}=\max \{|x|,|y|,|z|\}$.
b) If $f \in \mathbb{C}[0,2]$ and $p \geq 1$, define

$$
\|f\|_{p}:=\left[\int_{0}^{2}|f(x)|^{p} d x\right]^{1 / p}
$$

Show that $\lim _{p \rightarrow \infty}\|f\|_{p}=\max _{0 \leq x \leq 2} \mid f(x \mid$.
10. Compute $\lim _{\lambda \rightarrow \infty} \int_{0}^{1}|\sin (\lambda x)| d x$.
11. Let $p(x)$ be a real polynomial of degree n. The following uses the inner product $\langle f, g\rangle:=\int_{0}^{1} f(x) g(x) d x$.
a) If p is orthogonal to the constants, show that p has at least one real zero in the interval $\{0<x<1\}$.
b) If p is orthogonal to all polynomials of degree at most one, show that p has at least two distinct real zeros in the interval $\{0<x<1\}$.
c) If p is orthogonal to all polynomials of degree at most $n-1$, show that p has exactly n distinct real zeros in the interval $\{0<x<1\}$.

Bonus Problems

These are more challenging. If you do any of these, please give your solutions directly to me by Thursday, Nov. 30.

Bonus Problem 1 Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function.
a) Show that $\lim _{\lambda \rightarrow \infty} \int_{0}^{1} f(x) \sin (\lambda x) d x=0$.
b) (generalization) If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with period P, show that

$$
\lim _{\lambda \rightarrow \infty} \int_{0}^{1} f(x) \varphi(\lambda x) d x=\bar{\varphi} \int_{0}^{1} f(x) d x
$$

where $\bar{\varphi}:=\frac{1}{P} \int_{0}^{P} \varphi(t) d t$ is the average of φ over one period.
Bonus Problem 2 Let \mathcal{C} be the ring of continuous functions on the interval $0 \leq x \leq 1$.
a) If $0 \leq c \leq 1$, show that the subset $\{f \in \mathcal{C} \mid f(c)=0\}$ is a maximal ideal.
b) Show that every maximal ideal in \mathcal{C} has this form.

Bonus Problem 3 Let a_{0}, a_{1}, \ldots be any sequence of real numbers. Show there is a smooth function $f(x)$ with the property that a_{n} is its $n^{\text {th }}$ Taylor coefficient: $a_{n}=\left.\frac{1}{n!} f^{(n)}(x)\right|_{x=0}$.

