Homework Set 8

DUE: Thurs. Nov. 16, 2006. Late papers accepted until 1:00 Friday.

Math 508, Fall 2006

Jerry Kazdan

Note: We say a function is *smooth* if its derivatives of all orders exist and are continuous.

- 1. Let $\mathbf{r}(t)$ describe a smooth curve in \mathbb{R}^3 and let V be a fixed vector. If $\mathbf{r}'(t)$ is perpendicular to V for all t and if $\mathbf{r}(0)$ is perpendicular to V, show that $\mathbf{r}(t)$ is perpendicular to V for all t.
- 2. A *diffeomorphism* is a smooth invertable map whose inverse map is also smooth.
 - a) Find a diffeomorphism $f : \mathbb{R} \to \mathbb{R}_+$, where \mathbb{R}_+ is the half-line: $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x > 0\}$.
 - b) Find a diffeomorphism $g : \mathbb{R} \to \Omega$, where Ω is the interval: $\Omega = \{x \in \mathbb{R} \mid 0 < x < 1\}$.
 - c) Find a diffeomorphism $F : \mathbb{R}^2 \to \mathbb{R}^2_+$, where \mathbb{R}^2_+ is the upper half-plane: $\mathbb{R}^2_+ = \{(x, y) \in \mathbb{R}^2 | y > 0\}.$
 - d) Find a diffeomorphism $G : \mathbb{R}^2 \to \Omega$, where Ω is the strip: $\Omega = \{(x, y) \in \mathbb{R}^2 | 0 < y < 1\}$.
- 3. Let f(x) be a smooth function for $x \ge 1$ with the property that $f'(x) \to 0$ as $x \to \infty$.
 - a) Show that $f(n+1) f(n) \rightarrow 0$ as $n \rightarrow \infty$.
 - b) Compute $\lim_{n \to \infty} \sqrt[5]{n+1} \sqrt[5]{n}$.
- 4. For x in any finite interval $|x| \le c$ prove that $\lim_{N \to \infty} \sum_{k=0}^{N} \frac{x^k}{k!} = e^x$ by showing that the remainder in the Taylor series goes to zero.
- 5. [ERROR IN INTERPOLATION] Let $f : [a, b] \to \mathbb{R}$ be a smooth function.
 - a) Let g(x) be the straight line with the property that g(a) = f(a) and g(b) = f(b). For any point $c \in [a, b]$ obtain an estimate for the error: f(c) - g(c). REMARK: Your estimate will involve f''(z) for some point $z \in [a, b]$. The estimate is related to the procedure used to find the error in a Taylor polynomial.

HINT: Define the constant *M* by f(c) = g(c) + M(c-a)(c-b). Then consider the function

$$\phi(x) := f(x) - g(x) - M(x - a)(x - b).$$

- b) Let $a = x_0 < x_2 < \cdots < x_k = b$ and let g(x) be the polynomial of degree k that agrees with f at these k + 1 points, so $g(x_j) = f(x_j)$, $j = 0, 1, \dots, k$. Obtain an estimate for the error, f(c) g(c), for any $c \in [a, b]$
- 6. Let $f: [0, 1] \to \mathbb{R}$ be a continuous function.
 - a) If $f(x) \ge 0$ and $\int_0^1 f(x) dx = 0$, prove that f(x) = 0 for all $x \in [0, 1]$.
 - b) If $\int_0^1 f(x) dx = 0$, prove that f(c) = 0 for some $c \in (0, 1)$. Even more, prove that f(x) changes sign somewhere in this interval.
 - c) If $f:[0,1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) dx = 0$ for *all* continuous functions *g* prove that f(x) = 0 for all $x \in [0,1]$.
 - d) If $f: [0, 1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) dx = 0$ for all C^1 functions g that satisfy g(0) = g(1) = 0, must it be true that f(x) = 0 for all $x \in [0, 1]$? Proof or counterexample.
- 7. Let f(t) be a continuous function for $0 \le t < \infty$. If $\lim_{t\to\infty} f(t) = c$, show that

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T f(t)\,dt=c.$$

- 8. Let f(x) be a continuous function for $0 \le x \le 1$. Evaluate $\lim_{n \to \infty} n \int_0^1 f(x) x^n dx$. (Justify your assertions.)
- 9. a) If $V = (x, y, z) \in \mathbb{R}^3$ and $p \ge 1$, define $||V||_p := [|x|^p + |y|^p + |z|^p]^{1/p}$. Show that $\lim_{p \to \infty} ||V||_p = \max\{|x|, |y|, |z|\}.$
 - b) If $f \in \mathbb{C}[0, 2]$ and $p \ge 1$, define

$$||f||_p := \left[\int_0^2 |f(x)|^p dx\right]^{1/p}.$$

Show that $\lim_{p\to\infty} ||f||_p = \max_{0\le x\le 2} |f(x)|$.

10. Compute $\lim_{\lambda \to \infty} \int_0^1 |\sin(\lambda x)| dx$.

- 11. Let p(x) be a real polynomial of degree *n*. The following uses the inner product $\langle f, g \rangle := \int_0^1 f(x)g(x) dx$.
 - a) If p is orthogonal to the constants, show that p has at least one real zero in the interval $\{0 < x < 1\}$.
 - b) If p is orthogonal to all polynomials of degree at most one, show that p has at least two distinct real zeros in the interval $\{0 < x < 1\}$.
 - c) If p is orthogonal to all polynomials of degree at most n-1, show that p has exactly n distinct real zeros in the interval $\{0 < x < 1\}$.

BONUS PROBLEMS

These are more challenging. If you do any of these, please give your solutions directly to me by Thursday, Nov. 30.

Bonus Problem 1 Let $f: [0,1] \to \mathbb{R}$ be a continuous function.

- a) Show that $\lim_{\lambda \to \infty} \int_0^1 f(x) \sin(\lambda x) dx = 0.$
- b) (generalization) If $\varphi \colon \mathbb{R} \to \mathbb{R}$ is continuous with period *P*, show that

$$\lim_{\lambda \to \infty} \int_0^1 f(x) \varphi(\lambda x) \, dx = \overline{\varphi} \int_0^1 f(x) \, dx,$$

where $\overline{\varphi} := \frac{1}{P} \int_0^P \varphi(t) dt$ is the average of φ over one period.

Bonus Problem 2 Let C be the ring of continuous functions on the interval $0 \le x \le 1$. a) If $0 \le c \le 1$, show that the subset $\{ f \in C \mid f(c) = 0 \}$ is a maximal ideal.

b) Show that every maximal ideal in C has this form.

Bonus Problem 3 Let a_0, a_1, \ldots be *any* sequence of real numbers. Show there is a smooth function f(x) with the property that a_n is its nth Taylor coefficient: $a_n = \frac{1}{n!} f^{(n)}(x) \big|_{x=0}$.