Homework Set 9

DUE: Thurs. Nov. 28, 2006. Late papers accepted until 1:00 Friday.

Math 508, Fall 2006

Jerry Kazdan

Note: We say a function is *smooth* if its derivatives of all orders exist and are continuous.

- 1. Let $\alpha(t)$ and $\beta(s)$ describe smooth curves in \mathbb{R}^3 that do not intersect. Say the points $p = \alpha(t_0)$ and $q = \beta(s_0)$ minimize the distance between the curves. Show that the line from *p* to *q* is perpendicular to both of these curves.
- 2. a) Let y = f(x) define a smooth curve in the plane. If *P*, *Q* and *R* are three distinct points on the curve, let Γ_{PQR} be the circle that passes through these three points (we allow that Γ_{PQR} might be a straight line, which can be viewed as a circle with infinite radius). In the limit as both $Q \rightarrow P$ and $R \rightarrow P$ show that this circle Γ_P is tangent to the curve at *P* and that in addition the second derivative of the curve and the circle agree at *P*. [If the circle Γ_P has radius *R*, we say that the *curvature* of y = f(x) at *P* is 1/R.]
 - b) Use this to obtain a formula for the curvature in terms of f, f', and f''.
- 3. Let $f(x) \in C([a,b])$. Show that

$$\exp\left[\frac{1}{b-a}\int_{a}^{b}f(x)\,dx\right] \le \frac{1}{b-a}\int_{a}^{b}\exp[f(x)]\,dx$$

[HINT: Use the inequality $e^{u} \ge 1 + u$ where $u = f - \bar{f}$. Here \bar{f} = average of $f = \frac{1}{b-a} \int_{a}^{b} f(x) dx$.[

4. In number theory, the function $\operatorname{Li}(x) := \int_2^x \frac{dt}{\log t}$ arises in estimating the number of primes less than x. Show that $\operatorname{Li}(x)$ is asymptotically equal to $x/\log x$ for large x, that is

$$\lim_{x \to \infty} \frac{\operatorname{Li}(x)}{\frac{x}{\log x}} = 1,$$

5. If f(x) > 0 is continuous for all $x \ge 0$ and the limit $\lim_{c \to \infty} \int_0^c f(x) dx$ exists, must it be true that $\lim_{x \to \infty} f(x) = 0$? Proof or counterexample.

6. a) If a smooth function u(x, y) satisfies

$$\frac{\partial u}{\partial y} = 0$$
 on all of \mathbb{R}^2 and $u(x,0) = 7 + x + \sin 2x$,

what can you conclude? Why?

b) If a smooth function v(x, y) satisfies

$$\frac{\partial v}{\partial x} - 2\frac{\partial v}{\partial y} = 0$$
 on all of \mathbb{R}^2 and $v(x,0) = 7 + x + \sin 2x$.

what can you conclude? Why?

Some Review Problems

- 7. Consider the linear space *S* of real sequences $x = (x_1, x_2, ...)$ with only a finite number of non-zero terms. Let $||x|| := \max_{i} |x_i|$.
 - a) Show that this is a norm on this space.
 - b) Is this space complete with this norm? Justify your response.
- 8. Let X be any metric space and $\mathcal{B}(X,\mathbb{R})$ the metric space of all *bounded* real valued functions $f: X \to \mathbb{R}$ with the metric

$$\rho(f,g) := \sup_{x \in X} |f(x) - g(x)|.$$

Show that this metric space is complete. [First try the case where *X* is the real interval $0 \le x \le 1$].

- 9. The nth Legendre polynomial is $P_n(x) = \frac{d^n}{dx^n}(x^2 1)^n$.
 - a) Show that $P_n(x)$ is a polynomial of degree n.
 - b) Show that $P_n(x)$ has exactly *n* real distinct zeroes in the interval $\{-1 < x < 1\}$.
 - c) If $k \neq n$, show that $\int_{-1}^{1} P_n(x) P_k(x) dx = 0$, in other words, these polynomials are orthogonal in the inner product of $L^2([-1,1])$.