Homework Set 9

DUE: Thurs. Nov. 28, 2006. Late papers accepted until 1:00 Friday.

Math 508, Fall 2006

Jerry Kazdan

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Let $\alpha(t)$ and $\beta(s)$ describe smooth curves in \mathbb{R}^{3} that do not intersect. Say the points $p=\alpha\left(t_{0}\right)$ and $q=\beta\left(s_{0}\right)$ minimize the distance between the curves. Show that the line from p to q is perpendicular to both of these curves.
2. a) Let $y=f(x)$ define a smooth curve in the plane. If P, Q and R are three distinct points on the curve, let $\Gamma_{P Q R}$ be the circle that passes through these three points (we allow that $\Gamma_{P Q R}$ might be a straight line, which can be viewed as a circle with infinite radius). In the limit as both $Q \rightarrow P$ and $R \rightarrow P$ show that this circle Γ_{P} is tangent to the curve at P and that in addition the second derivative of the curve and the circle agree at P. [If the circle Γ_{P} has radius R, we say that the curvature of $y=f(x)$ at P is $1 / R$.]
b) Use this to obtain a formula for the curvature in terms of f, f^{\prime}, and $f^{\prime \prime}$.
3. Let $f(x) \in C([a, b])$. Show that

$$
\exp \left[\frac{1}{b-a} \int_{a}^{b} f(x) d x\right] \leq \frac{1}{b-a} \int_{a}^{b} \exp [f(x)] d x
$$

[Hint: Use the inequality $e^{u} \geq 1+u$ where $u=f-\bar{f}$. Here $\bar{f}=$ average of $f=$ $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.[
4. In number theory, the function $\operatorname{Li}(x):=\int_{2}^{x} \frac{d t}{\log t}$ arises in estimating the number of primes less than x. Show that $\operatorname{Li}(x)$ is asymptotically equal to $x / \log x$ for large x, that is

$$
\lim _{x \rightarrow \infty} \frac{\operatorname{Li}(x)}{\frac{x}{\log x}}=1
$$

5. If $f(x)>0$ is continuous for all $x \geq 0$ and the limit $\lim _{c \rightarrow \infty} \int_{0}^{c} f(x) d x$ exists, must it be true that $\lim _{x \rightarrow \infty} f(x)=0$? Proof or counterexample.
6. a) If a smooth function $u(x, y)$ satisfies

$$
\frac{\partial u}{\partial y}=0 \quad \text { on all of } \mathbb{R}^{2} \text { and } \quad u(x, 0)=7+x+\sin 2 x
$$

what can you conclude? Why?
b) If a smooth function $v(x, y)$ satisfies

$$
\frac{\partial v}{\partial x}-2 \frac{\partial v}{\partial y}=0 \quad \text { on all of } \mathbb{R}^{2} \text { and } \quad v(x, 0)=7+x+\sin 2 x
$$

what can you conclude? Why?

Some Review Problems

7. Consider the linear space S of real sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ with only a finite number of non-zero terms. Let $\|x\|:=\max _{j}\left|x_{j}\right|$.
a) Show that this is a norm on this space.
b) Is this space complete with this norm? Justify your response.
8. Let X be any metric space and $\mathcal{B}(X, \mathbb{R})$ the metric space of all bounded real valued functions $f: X \rightarrow \mathbb{R}$ with the metric

$$
\rho(f, g):=\sup _{x \in X}|f(x)-g(x)| .
$$

Show that this metric space is complete. [First try the case where X is the real interval $0 \leq x \leq 1]$.
9. The $\mathrm{n}^{\text {th }}$ Legendre polynomial is $P_{n}(x)=\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.
a) Show that $P_{n}(x)$ is a polynomial of degree n.
b) Show that $P_{n}(x)$ has exactly n real distinct zeroes in the interval $\{-1<x<1\}$.
c) If $k \neq n$, show that $\int_{-1}^{1} P_{n}(x) P_{k}(x) d x=0$, in other words, these polynomials are orthogonal in the inner product of $L^{2}([-1,1])$.

