Directions This exam has three parts, Part A has 4 problems asking for Examples (20 points, 5 points each), Part B asks you to describe some sets (20 points), Part C has 4 traditional problems (60 points, 15 points each).
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Examples (4 problems, 5 points each). Give an example having the specified property.
A-1. A metric space that contains all but one of its limit points.

A-2. An open cover of $\{x \in \mathbb{R}: 0<x \leq 1\}$ that has no finite sub-cover.

A-3. A metric space having a bounded infinite sequence with no convergent subsequence.

A-4. A metric space that is not complete.

Part B: Classify sets (20 points) For each of the following sets, circle the listed properties it has:
a) $\left\{1-\frac{1}{n} \in \mathbb{R}, n=1,2,3, \ldots\right\}$ open closed bounded compact countable
b) $\{1\} \cup\left\{1+\frac{(-1)^{n}}{n} \in \mathbb{R}, n=1,2,3, \ldots\right\}$
open closed bounded compact countable
c) $\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y-x \leq 1\right\}$ open closed bounded compact countable
d) $\left\{(x, y) \in \mathbb{R}^{2}: 0<x^{2}+y^{2}\right\} \quad$ open closed bounded compact countable
e) $\left\{(x, y) \in \mathbb{R}^{2}: x>1, y<\frac{1}{x}\right\} \quad$ open closed bounded compact countable
f) $\left\{(k, n) \in \mathbb{R}^{2}: k, n\right.$ any positive integers with $\left.k^{2}+n^{2}<100\right\}$
open closed bounded compact countable
[Continued on next page]

Part C: Traditional Problems (4 problems, 15 points each)
$\mathrm{C}-1$. In \mathbb{R}, if $a_{n} \rightarrow A$ and $b_{n} \rightarrow B$, show that the product $a_{n} b_{n} \rightarrow A B$.
C-2. Given a complex sequence $\left\{a_{k}\right\}$, let $S_{n}=\frac{a_{1}+\cdots+a_{n}}{n}$ be the sequence of averages (arithmetic mean). If a_{k} converges to 0 , show that the averages S_{n} also converge to 0 .

C-3. Let $\left\{a_{n}\right\} \in \mathbb{C}$ be a bounded sequence. If $x>1$ show that $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{x}}$ converges absolutely.

C-4. For any two sets S, T in a metric space, define the distance between these sets as

$$
\operatorname{dist}(S, T)=\inf _{x \in S, y \in T} d(x, y) .
$$

Assume both S and T are compact, and their intersection, $S \cap T$, is empty.
a) Prove that there are points $p \in S$ and $q \in T$ with $\operatorname{dist}(S, T)=d(p, q)$.
b) Is $\operatorname{dist}(S, T)>0$ necessarily true? Justify your assertion.

