Math 508 October 16, 2008

DIRECTIONS This exam has three parts, Part A has 4 problems asking for Examples (20 points, 5 points each), Part B asks you to describe some sets (20 points), Part C has 4 traditional problems (60 points, 15 points each).

Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides.

Part A: Examples (4 problems, 5 points each). Give an example having the specified property.

A–1. A metric space that contains all but one of its limit points.

A-2. An open cover of $\{x \in \mathbb{R} : 0 < x \leq 1\}$ that has no finite sub-cover.

A–3. A metric space having a bounded infinite sequence with no convergent subsequence.

A–4. A metric space that is not complete.

Part B: Classify sets (20 points) For each of the following sets, **circle** the listed properties it has:

a)	$\{1 - \frac{1}{n} \in \mathbb{R}, n = 1, 2, 3, \ldots\}$	open	closed	bounded	compact	countable
b)	$\{1\} \cup \{1 + \frac{(-1)^n}{n} \in \mathbb{R}, \ n = 1, 2, 3, \ldots\}$					
		open	closed	bounded	compact	countable
c)	$\{(x,y)\in \mathbb{R}^2: 0\leq y-x\leq 1\}$	open	closed	bounded	compact	countable
d)	$\{(x,y) \in \mathbb{R}^2 : 0 < x^2 + y^2\}$	open	closed	bounded	compact	countable
e)	$\{(x,y)\in \mathbb{R}^2: x>1, \ y<\frac{1}{x}\}$	open	closed	bounded	compact	countable
f)	$\{(k,n)\in \mathbb{R}^2: k,n \text{ any positive integers with } k^2+n^2<100\}$					
		open	closed	bounded	compact	countable

[CONTINUED ON NEXT PAGE]

Part C: Traditional Problems (4 problems, 15 points each)

C–1. In \mathbb{R} , if $a_n \to A$ and $b_n \to B$, show that the product $a_n b_n \to AB$.

C-2. Given a complex sequence $\{a_k\}$, let $S_n = \frac{a_1 + \cdots + a_n}{n}$ be the sequence of averages (arithmetic mean). If a_k converges to 0, show that the averages S_n also converge to 0.

C-3. Let $\{a_n\} \in \mathbb{C}$ be a bounded sequence. If x > 1 show that $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ converges absolutely.

C-4. For any two sets S, T in a metric space, define the *distance* between these sets as

$$\operatorname{dist}(S,T) = \inf_{x \in S, \, y \in T} d(x,y)$$

Assume both S and T are compact, and their intersection, $S \cap T$, is empty.

- a) Prove that there are points $p \in S$ and $q \in T$ with dist(S,T) = d(p,q).
- b) Is dist(S,T) > 0 necessarily true? Justify your assertion.