DIRECTIONS This exam has two parts, Part A has 10 True-False problems (30 points, 3 points each). Part B has 5 traditional problems (70 points, 14 points each). Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides.

Part A: True/False (answer only, no reasons). 10 problems, 3 points each). **Circle T** or **F** in in each problem.

- 1. **T F** A bounded sequence $\{a_n\}$ of real numbers always has a convergent subsequence.
- 2. **T F** A series $\sum_{n=1}^{\infty} a_n$ of complex numbers converges if and only if the corresponding sequence of partial sums is bounded.
- 3. **T F** A closed and bounded subset of a complete metric space must be compact.
- 4. **T F** If A and B are compact subsets of a metric space, then $A \cup B$ is also compact.
- 5. **T F** If M is any metric space and $f: M \to \mathbb{R}$ is any continuous real-valued function, then the function $g: M \to \mathbb{R}$ defined by $g(x) := (f(x))^2$ is always continuous.
- 6. **T F** If $f : X \to Y$ is a continuous map between metric spaces, and f(X) is compact, then X is compact.
- 7. **T F** A compact subset of a metric space is always complete.
- 8. **T F** Let $\{x_n\}$ be a sequence of points in a metric space. If two subsequences of this sequence converge, then they must converge to the same number.
- 9. **T F** If $f : [0, 1] \to \mathbb{R}$ is a continuous function and $\int_0^1 f(x) dx = 0$, then f(x) is positive somewhere and negative somewhere in this interval (unless it is identically zero).

10. **T F**
$$f(x) := \sum_{1}^{\infty} \frac{\sin(3^n \pi x)}{2^n}$$
 is a continuous function on \mathbb{R} .

Part B: Traditional Problems (5 problems, 14 points each)

B-1. Let f: [-2, 2] be a smooth function with the property that

$$f(-1) = 1,$$
 $f(0) = 0,$ $f(1) = 2.$

Show that at some point $c \in (-1, 1)$ we have f''(c) > 0. In fact, find an explicit constant m > 0 so that $f''(c) \ge m$.

- B-2. Let A(t) and B(t) be $n \times n$ matrices that are differentiable for $t \in [a, b]$ and let $t_0 \in (a, b)$. Directly from the *definition* of the derivative, show that the product M(t) := A(t)B(t) is differentiable at $t = t_0$ and obtain the usual formula for $M'(t_0)$.
- B-3. Let w(x) be a smooth function that satisfies w'' c(x)w = 0, where c(x) > 0 is a given function.
 - a) Show that w cannot have a local positive maximum (that is, a maximum at an interior point where the function is positive). Also show that w cannot have a local negative minimum.
 - b) [Uniqueness] If you also know that w(0) = a and w(1) = b, prove that there is at most one solution $w(x) \in C^2([0, 1])$ with these properties.
- B-4. Let f(x) and K(x,y) be a given continuous real valued functions for $x, y \in [0, 2]$, and, say $|K(x,y)| \leq M$. Show that if $0 < a \leq 2$ is sufficiently small, the integral equation

$$u(x) = f(x) + \int_0^x K(x, y) u(y) \, dy$$

has a unique continuous solution u(x) for $x \in [0, a]$.

B-5. Let $\varphi_n(t)$ be a sequence of smooth real-valued functions with the properties

(a)
$$\varphi_n(t) \ge 0$$
, (b) $\varphi_n(t) = 0$ for $|t| \ge 1/n$, (c) $\int_{-\infty}^{\infty} \varphi_n(t) dt = 1$.

Note: because of (b), this integral is only over $-1/n \le t \le 1/n$. Assume f(x) is uniformly continuous for all $x \in \mathbb{R}$ and define

$$f_n(x) := \int_{-\infty}^{\infty} f(x-t)\varphi_n(t) dt.$$

Show that $f_n(x)$ converges uniformly to f(x) for all $x \in \mathbb{R}$. [SUGGESTION: Use $f(x) = f(x) \left(\int_{-\infty}^{\infty} \varphi_n(t) dt \right) = \int_{-\infty}^{\infty} f(x) \varphi_n(t) dt$. Also, note *explicitly* where you use the uniform continuity of f].

REMARK: One can show that the approximations f_n are also smooth. Thus, this proves that you can approximate a continuous function *uniformly* on any compact set by a smooth function.