
Math 508 Exam 2 Jerry L. Kazdan
December 4, 2008 10:30 – 11:50

Directions This exam has two parts, Part A has 10 True-False problems (30 points, 3 points
each). Part B has 5 traditional problems (70 points, 14 points each).
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on both
sides.

Part A: True/False (answer only, no reasons). 10 problems, 3 points each).
Circle T or F in in each problem.

1. T F A bounded sequence {an} of real numbers always has a convergent subsequence.

2. T F A series
∑

∞

n=1
an of complex numbers converges if and only if the corresponding

sequence of partial sums is bounded.

3. T F A closed and bounded subset of a complete metric space must be compact.

4. T F If A and B are compact subsets of a metric space, then A ∪ B is also compact.

5. T F If M is any metric space and f : M → R is any continuous real-valued function,
then the function g : M → R defined by g(x) := (f(x))2 is always continuous.

6. T F If f : X → Y is a continuous map between metric spaces, and f(X) is compact,
then X is compact.

7. T F A compact subset of a metric space is always complete.

8. T F Let {xn} be a sequence of points in a metric space. If two subsequences of this
sequence converge, then they must converge to the same number.

9. T F If f : [0, 1] → R is a continuous function and
∫

1

0
f(x) dx = 0, then f(x) is positive

somewhere and negative somewhere in this interval (unless it is identically zero).

10. T F f(x) :=
∞

∑

1

sin(3nπx)

2n
is a continuous function on R .
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Part B: Traditional Problems (5 problems, 14 points each)

B–1. Let f : [−2, 2] be a smooth function with the property that

f(−1) = 1, f(0) = 0, f(1) = 2.

Show that at some point c ∈ (−1, 1) we have f ′′(c) > 0. In fact, find an explicit constant
m > 0 so that f ′′(c) ≥ m .

B–2. Let A(t) and B(t) be n× n matrices that are differentiable for t ∈ [a, b] and let t0 ∈ (a, b).
Directly from the definition of the derivative, show that the product M(t) := A(t)B(t) is
differentiable at t = t0 and obtain the usual formula for M ′(t0).

B–3. Let w(x) be a smooth function that satisfies w′′ − c(x)w = 0, where c(x) > 0 is a given
function.

a) Show that w cannot have a local positive maximum (that is, a maximum at an interior
point where the function is positive). Also show that w cannot have a local negative
minimum.

b) [Uniqueness] If you also know that w(0) = a and w(1) = b , prove that there is at most

one solution w(x) ∈ C2([0, 1]) with these properties.

B–4. Let f(x) and K(x, y) be a given continuous real valued functions for x, y ∈ [0, 2], and, say
|K(x, y)| ≤ M . Show that if 0 < a ≤ 2 is sufficntly small, the integral equation

u(x) = f(x) +

∫

x

0

K(x, y)u(y) dy

has a unique continuous solution u(x) for x ∈ [0, a] .

B–5. Let ϕn(t) be a sequence of smooth real-valued functions with the properties

(a) ϕn(t) ≥ 0, (b) ϕn(t) = 0 for |t| ≥ 1/n, (c)

∫

∞

−∞

ϕn(t) dt = 1.

Note: because of (b), this integral is only over −1/n ≤ t ≤ 1/n .

Assume f(x) is uniformly continuous for all x ∈ R and define

fn(x) :=

∫

∞

−∞

f(x − t)ϕn(t) dt.

Show that fn(x) converges uniformly to f(x) for all x ∈ R . [Suggestion: Use

f(x) = f(x)
(

∫

∞

−∞
ϕn(t) dt

)

=
∫

∞

−∞
f(x)ϕn(t) dt . Also, note explicitly where you use the

uniform continuity of f ].

Remark: One can show that the approximations fn are also smooth. Thus, this proves that
you can approximate a continuous function uniformly on any compact set by a smooth function.
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