Directions This exam has two parts, Part A has 10 True-False problems (30 points, 3 points each). Part B has 5 traditional problems (70 points, 14 points each).
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: True/False (answer only, no reasons). 10 problems, 3 points each).
Circle \mathbf{T} or \mathbf{F} in in each problem.

1. $\mathbf{T} \quad \mathbf{F}$ A bounded sequence $\left\{a_{n}\right\}$ of real numbers always has a convergent subsequence.
2. $\mathbf{T} \quad \mathbf{F}$ A series $\sum_{n=1}^{\infty} a_{n}$ of complex numbers converges if and only if the corresponding sequence of partial sums is bounded.
3. $\mathbf{T} \quad \mathbf{F}$ A closed and bounded subset of a complete metric space must be compact.
4. $\mathbf{T} \quad \mathbf{F}$ If A and B are compact subsets of a metric space, then $A \cup B$ is also compact.
5. $\mathbf{T} \quad \mathbf{F}$ If M is any metric space and $f: M \rightarrow \mathbb{R}$ is any continuous real-valued function, then the function $g: M \rightarrow \mathbb{R}$ defined by $g(x):=(f(x))^{2}$ is always continuous.
6. $\mathbf{T} \quad \mathbf{F}$ If $f: X \rightarrow Y$ is a continuous map between metric spaces, and $f(X)$ is compact, then X is compact.
7. $\begin{array}{ll}\mathbf{T} & \mathbf{F} \\ \text { A compact subset of a metric space is always complete. }\end{array}$
8. $\mathbf{T} \mathbf{F}$ Let $\left\{x_{n}\right\}$ be a sequence of points in a metric space. If two subsequences of this sequence converge, then they must converge to the same number.
9. $\mathbf{T} \quad \mathbf{F}$ If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function and $\int_{0}^{1} f(x) d x=0$, then $f(x)$ is positive somewhere and negative somewhere in this interval (unless it is identically zero).
10. $\mathbf{T} \mathbf{F} f(x):=\sum_{1}^{\infty} \frac{\sin \left(3^{n} \pi x\right)}{2^{n}}$ is a continuous function on \mathbb{R}.

Part B: Traditional Problems (5 problems, 14 points each)
B-1. Let $f:[-2,2]$ be a smooth function with the property that

$$
f(-1)=1, \quad f(0)=0, \quad f(1)=2 .
$$

Show that at some point $c \in(-1,1)$ we have $f^{\prime \prime}(c)>0$. In fact, find an explicit constant $m>0$ so that $f^{\prime \prime}(c) \geq m$.

B-2. Let $A(t)$ and $B(t)$ be $n \times n$ matrices that are differentiable for $t \in[a, b]$ and let $t_{0} \in(a, b)$. Directly from the definition of the derivative, show that the product $M(t):=A(t) B(t)$ is differentiable at $t=t_{0}$ and obtain the usual formula for $M^{\prime}\left(t_{0}\right)$.

B-3. Let $w(x)$ be a smooth function that satisfies $w^{\prime \prime}-c(x) w=0$, where $c(x)>0$ is a given function.
a) Show that w cannot have a local positive maximum (that is, a maximum at an interior point where the function is positive). Also show that w cannot have a local negative minimum.
b) [Uniqueness] If you also know that $w(0)=a$ and $w(1)=b$, prove that there is at most one solution $w(x) \in C^{2}([0,1])$ with these properties.

B-4. Let $f(x)$ and $K(x, y)$ be a given continuous real valued functions for $x, y \in[0,2]$, and, say $|K(x, y)| \leq M$. Show that if $0<a \leq 2$ is sufficntly small, the integral equation

$$
u(x)=f(x)+\int_{0}^{x} K(x, y) u(y) d y
$$

has a unique continuous solution $u(x)$ for $x \in[0, a]$.

B- 5 . Let $\varphi_{n}(t)$ be a sequence of smooth real-valued functions with the properties

$$
\text { (a) } \varphi_{n}(t) \geq 0, \quad \text { (b) } \varphi_{n}(t)=0 \text { for }|t| \geq 1 / n, \quad(c) \quad \int_{-\infty}^{\infty} \varphi_{n}(t) d t=1
$$

Note: because of (b), this integral is only over $-1 / n \leq t \leq 1 / n$.
Assume $f(x)$ is uniformly continuous for all $x \in \mathbb{R}$ and define

$$
f_{n}(x):=\int_{-\infty}^{\infty} f(x-t) \varphi_{n}(t) d t
$$

Show that $f_{n}(x)$ converges uniformly to $f(x)$ for all $x \in \mathbb{R}$. [Suggestion: Use $f(x)=f(x)\left(\int_{-\infty}^{\infty} \varphi_{n}(t) d t\right)=\int_{-\infty}^{\infty} f(x) \varphi_{n}(t) d t$. Also, note explicitly where you use the uniform continuity of f].

Remark: One can show that the approximations f_{n} are also smooth. Thus, this proves that you can approximate a continuous function uniformly on any compact set by a smooth function.

