Directions This exam has two parts, Part A has 10 True-False problems (30 points, 3 points each). Part B has 5 traditional problems (70 points, 14 points each).
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: True/False (answer only, no reasons). 10 problems, 3 points each).
Circle \mathbf{T} or \mathbf{F} in in each problem.

1. $\mathbf{T} \quad \mathbf{F}$ A bounded sequence $\left\{a_{n}\right\}$ of real numbers always has a convergent subsequence. True Rudin, p. 51 Theorem 3.6b)
2. $\mathbf{T} \quad \mathbf{F}$ A series $\sum_{n=1}^{\infty} a_{n}$ of complex numbers converges if and only if the corresponding sequence of partial sums is bounded.
False Example: $\quad \sum(-1)^{n}$.
3. $\begin{array}{|cc|}\mathbf{T} & \mathbf{F}\end{array}$ A closed and bounded subset of a complete metric space must be compact.

False Example: The unit sphere in ℓ_{2}.
4. $\mathbf{T} \quad \mathbf{F}$ If A and B are compact subsets of a metric space, then $A \cup B$ is also compact. True Rudin, p. 38 2.35 Corollary
5. $\mathbf{T} \quad \mathbf{F}$ If M is any metric space and $f: M \rightarrow \mathbb{R}$ is any continuous real-valued function, then the function $g: M \rightarrow \mathbb{R}$ defined by $g(x):=f(x)^{2}$ is always continuous.

True Given $x_{0} \in M$ and $\epsilon>0$, pick $\delta>0$ so that if $d\left(x, x_{0}\right)<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. Let $M=\left|f\left(x_{0}\right)\right|$. Then

$$
\left|g(x)-g\left(x_{0}\right)\right|=\left|f(x)^{2}-f\left(x_{0}\right)^{2}\right|=\left|\left(f(x)-f\left(x_{0}\right)\right)\left(f(x)-f\left(x_{0}\right)+2 f\left(x_{0}\right)\right)\right| \leq \epsilon(\epsilon+2 M)
$$

6. $\mathbf{T} \quad \mathbf{F}$ If $f: X \rightarrow Y$ is a continuous map between metric spaces, and $f(X)$ is compact, then X is compact.
False Example: $\quad X=\mathbb{R}, f(x)=0$ for all $x \in \mathbb{R}$.
7. $\mathbf{T} \quad \mathbf{F}$ A compact subset of a metric space is always complete.

True Rudin, p. 54 (after Definition 3.12)
8. $\mathbf{T} \mathbf{F}$ Let $\left\{x_{n}\right\}$ be a sequence of points in a metric space. If two subsequences of this sequence converge, then they must converge to the same number.
False Example: In $\mathbb{R},\left\{(-1)^{n}\right\}$.
9. $\mathbf{T} \quad \mathbf{F}$ If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function and $\int_{0}^{1} f(x) d x=0$, then $f(x)$ is positive somewhere and negative somewhere in this interval (unless it is identically zero).
True If f is not identically zero, then it is either positive somewhere or negative somewhere (or both). Say it is positive at x_{0}. Then by continuity, it is positive in a neignborhood of x_{0}. If $f(x) \geq 0$, everywhere, then $\int_{0}^{1} f(x) d x>0$, a contradiction. Thus f must be negative at some x_{1} - and hence also in a neighborhood of x_{1}.
10. $\mathbf{T} \mathbf{F} f(x):=\sum_{1}^{\infty} \frac{\sin \left(3^{n} \pi x\right)}{2^{n}}$ is a continuous function on \mathbb{R}.

True Since $\left|\frac{\sin \left(3^{n} \pi x\right)}{2^{n}}\right| \leq \frac{1}{2^{n}}$, by the Weierstrass M-Test the series converges uniformly and absolutely - and hence to a continuous function.

Part B: Traditional Problems (5 problems, 14 points each)
$\mathrm{B}-1$. Let $f:[-2,2]$ be a smooth function with the property that

$$
f(-1)=1, \quad f(0)=0, \quad f(1)=2 .
$$

Show that at some point $c \in(-1,1)$ we have $f^{\prime \prime}(c)>0$. In fact, find an explicit constant $m>0$ so that $f^{\prime \prime}(c) \geq m$.

Solution By the mean value theorem applied to the intervals $[-1,0]$ and $[0,1]$ there are points $a \in(-1,0)$ and $b \in(0,1)$ so that $f^{\prime}(a)=-1$ and $f^{\prime}(b)=2$. Applying the mean value theorem to f^{\prime}, we conclude there is a point $c \in(a, b)$ such that $f^{\prime \prime}(c)=3 /(b-a)>3 / 2$.

B-2. Let $A(t)$ and $B(t)$ be $n \times n$ matrices that are differentiable for $t \in[a, b]$ and let $t_{0} \in(a, b)$. Directly from the definition of the derivative, show that the product $M(t):=A(t) B(t)$ is differentiable at $t=t_{0}$ and obtain the usual formula for $M^{\prime}\left(t_{0}\right)$.

Solution [Caution: Usually $A(t)$ and $B(t)$ will not commute.]

$$
\begin{aligned}
\frac{M\left(t_{0}+h\right)-M\left(t_{0}\right)}{h} & =\frac{A\left(t_{0}+h\right) B\left(t_{0}+h\right)-A\left(t_{0}\right) B\left(t_{0}\right)}{h} \\
& =\frac{\left[A\left(t_{0}+h\right)-A\left(t_{0}\right)\right]}{h} B\left(t_{0}+h\right)+A\left(t_{0}\right) \frac{\left[B\left(t_{0}+h\right)-B\left(t_{0}\right)\right]}{h} .
\end{aligned}
$$

Since both A and B are differentiable at t_{0}, in the limit as $h \rightarrow 0$ we find that M is differentiable at t_{0} and

$$
M^{\prime}\left(t_{0}\right)=A^{\prime}\left(t_{0}\right) B\left(t_{0}\right)+A\left(t_{0}\right) B^{\prime}\left(t_{0}\right) .
$$

B-3. Let $w(x)$ be a smooth function that satisfies $w^{\prime \prime}-c(x) w=0$, where $c(x)>0$ is a given function.
a) Show that w cannot have a local positive maximum (that is, a maximum at an interior point where the function is positive). Also show that w cannot have a local negative minimum.

Solution If w has a positive maximum at an interior point x_{0}, then $w^{\prime \prime}\left(x_{0}\right) \leq 0$ and $w\left(x_{0}\right)>0$. Since $c>0$, this gives $w^{\prime \prime}\left(x_{0}\right)-c\left(x_{0}\right) w\left(x_{0}\right)<0$, which is a contradiction. If $w(x)$ has a local negative minimum, then the function $-w(x)$ has a local positive maximum, which we have just shown cannot occur.
b) [Uniqueness] If you also know that $w(0)=a$ and $w(1)=b$, prove that there is at most one solution $w(x) \in C^{2}([0,1])$ with these properties.
Solution Say there are two functions $u(x)$ and $v(x)$ that satisfy $w^{\prime \prime}-c(x) w=0$ and have the same boundary conditions. Let $z(x):=u(x)-v(x)$. Then $z^{\prime \prime}-c z=0$ with $z(0)=0$ and $z(1)=0$. If $z(x)$ is not identically zero, then it has either a positive maximum or a negative minimum at an interior point. But by part a), this cannot happen. Thus $z(x)=0$ everywhere in $[0,1]$. Consequently $u(x)=v(x)$ in this interval.

B-4. Let $f(x)$ and $K(x, y)$ be a given continuous real valued functions for $x, y \in[0,2]$, and, say $|K(x, y)| \leq M$. Show that if $0<a \leq 2$ is sufficntly small, the integral equation

$$
u(x)=f(x)+\int_{0}^{x} K(x, y) u(y) d y
$$

has a unique continuous solution $u(x)$ for $x \in[0, a]$.
Solution We use the Principle of Contracting Mapping. For our complete metric space we use $C([0, a])$ (with the uniform norm) for some $0<a \leq 2$ which will be specified below. Let

$$
T \varphi(x):=f(x)+\int_{0}^{x} K(x, y) \varphi(y) d y
$$

and seek a fixed point u of T.
Clearly for all $0<a \leq 2$ we have $T: C([0, a])$ to $C([0, a])$. We need only show that T is contracting for some $a \leq 2$. But

$$
T \varphi(x)-T \psi(x)=\int_{0}^{x} K(x, y)[\varphi(y)-\psi(y)] d y
$$

so

$$
|T \varphi(x)-T \psi(x)| \leq M a\|\varphi-\psi\| .
$$

Pick $a<1 / M$. Since the right side of the above inequality is independent of $x \in[0, a]$, then with $c=M a$,

$$
\|T \varphi-T \psi\| \leq c\|\varphi-\psi\|,
$$

so T is contracting. Thus the original integral equation has a unique solution.
Remark. By modifying this reasoning we can even use $a=2$. One approach to do this is to show that some power of T is contracting on $[0,2]$.
$\mathrm{B}-5$. Let $\varphi_{n}(t)$ be a sequence of smooth real-valued functions with the properties

$$
\text { (a) } \varphi_{n}(t) \geq 0, \quad \text { (b) } \varphi_{n}(t)=0 \text { for }|t| \geq 1 / n, \quad(c) \int_{-\infty}^{\infty} \varphi_{n}(t) d t=1
$$

Note: because of (b), this integral is only over $-1 / n \leq t \leq 1 / n$.
Assume $f(x)$ is uniformly continuous for all $x \in \mathbb{R}$ and define

$$
f_{n}(x):=\int_{-\infty}^{\infty} f(x-t) \varphi_{n}(t) d t
$$

Show that $f_{n}(x)$ converges uniformly to $f(x)$ for all $x \in \mathbb{R}$. [SugGESTION: Use $f(x)=f(x)\left(\int_{-\infty}^{\infty} \varphi_{n}(t) d t\right)=\int_{-\infty}^{\infty} f(x) \varphi_{n}(t) d t$. Also, note explicitly where you use the uniform continuity of $f]$.

REMARK: One can show that the approximations f_{n} are also smooth. Thus, this proves that you can approximate a continuous function uniformly on any compact set by a smooth function.

Solution Using the suggestion,

$$
f_{n}(x)-f(x)=\int_{-1 / n}^{1 / n}[f(x-t)-f(x)] \varphi_{n}(t) d t .
$$

Since f is uniformly continuous, given any $\epsilon>0$ there is a $\delta>0$ so that $|f(y)-f(x)|<\epsilon$ for any x, y that satisfy $|y-x|<\delta$. Pick some N with $1 / N<\delta$. Then for any $n \geq N$, if $|t| \leq 1 / n$ then $|(x-t)-x| \leq 1 / n<\delta$ so $|f(x-t)-f(x)|<\epsilon$ for all $x \in \mathbb{R}$. Consequently

$$
\left|f_{n}(x)-f(x)\right| \leq \epsilon \int_{|t| \leq 1 / n} \varphi_{n}(t) d t=\epsilon
$$

Because the right side is independent of x, we have $\left\|f_{n}-f\right\| \leq \epsilon$ in the uniform norm.

