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Math 508 Exam 2 Jerry L. Kazdan
December 4, 2008 10:30 – 11:50

Directions This exam has two parts, Part A has 10 True-False problems (30 points, 3 points
each). Part B has 5 traditional problems (70 points, 14 points each).
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on both
sides.

Part A: True/False (answer only, no reasons). 10 problems, 3 points each).
Circle T or F in in each problem.

1. T F A bounded sequence {an} of real numbers always has a convergent subsequence.

True Rudin, p. 51 Theorem 3.6b)

2. T F A series
∑∞

n=1
an of complex numbers converges if and only if the corresponding

sequence of partial sums is bounded.

False Example:
∑

(−1)n .

3. T F A closed and bounded subset of a complete metric space must be compact.

False Example: The unit sphere in `2 .

4. T F If A and B are compact subsets of a metric space, then A ∪B is also compact.

True Rudin, p.38 2.35 Corollary

5. T F If M is any metric space and f : M → R is any continuous real-valued function,
then the function g : M → R defined by g(x) := f(x)2 is always continuous.

True Given x0 ∈ M and ε > 0, pick δ > 0 so that if d(x, x0) < δ , then |f(x) − f(x0)| < ε .
Let M = |f(x0)| . Then

|g(x) − g(x0)| = |f(x)2 − f(x0)
2| = |

(

f(x) − f(x0)
)(

f(x) − f(x0) + 2f(x0)
)

| ≤ ε(ε+ 2M).

6. T F If f : X → Y is a continuous map between metric spaces, and f(X) is compact,
then X is compact.

False Example: X = R , f(x) = 0 for all x ∈ R .

7. T F A compact subset of a metric space is always complete.

True Rudin, p. 54 (after Definition 3.12)
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8. T F Let {xn} be a sequence of points in a metric space. If two subsequences of this
sequence converge, then they must converge to the same number.

False Example: In R , {(−1)n} .

9. T F If f : [0, 1] → R is a continuous function and
∫

1

0
f(x) dx = 0, then f(x) is positive

somewhere and negative somewhere in this interval (unless it is identically zero).

True If f is not identically zero, then it is either positive somewhere or negative somewhere
(or both). Say it is positive at x0 . Then by continuity, it is positive in a neignborhood of x0 .
If f(x) ≥ 0, everywhere, then

∫

1

0
f(x) dx > 0, a contradiction. Thus f must be negative at

some x1 – and hence also in a neighborhood of x1 .

10. T F f(x) :=

∞
∑

1

sin(3nπx)

2n
is a continuous function on R .

True Since
∣

∣

∣

sin(3nπx)

2n

∣

∣

∣
≤

1

2n
, by the Weierstrass M-Test the series converges uniformly and

absolutely – and hence to a continuous function.

Part B: Traditional Problems (5 problems, 14 points each)

B–1. Let f : [−2, 2] be a smooth function with the property that

f(−1) = 1, f(0) = 0, f(1) = 2.

Show that at some point c ∈ (−1, 1) we have f ′′(c) > 0. In fact, find an explicit constant
m > 0 so that f ′′(c) ≥ m .

Solution By the mean value theorem applied to the intervals [−1, 0] and [0, 1] there are
points a ∈ (−1, 0) and b ∈ (0, 1) so that f ′(a) = −1 and f ′(b) = 2. Applying the mean value
theorem to f ′ , we conclude there is a point c ∈ (a, b) such that f ′′(c) = 3/(b− a) > 3/2.

B–2. Let A(t) and B(t) be n× n matrices that are differentiable for t ∈ [a, b] and let t0 ∈ (a, b).
Directly from the definition of the derivative, show that the product M(t) := A(t)B(t) is
differentiable at t = t0 and obtain the usual formula for M ′(t0).

Solution [Caution: Usually A(t) and B(t) will not commute.]

M(t0 + h) −M(t0)

h
=
A(t0 + h)B(t0 + h) −A(t0)B(t0)

h

=
[A(t0 + h) − A(t0)]

h
B(t0 + h) + A(t0)

[B(t0 + h) −B(t0)]

h
.

Since both A and B are differentiable at t0 , in the limit as h → 0 we find that M is
differentiable at t0 and

M ′(t0) = A′(t0)B(t0) +A(t0)B
′(t0).
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B–3. Let w(x) be a smooth function that satisfies w′′ − c(x)w = 0, where c(x) > 0 is a given
function.

a) Show that w cannot have a local positive maximum (that is, a maximum at an interior
point where the function is positive). Also show that w cannot have a local negative
minimum.

Solution If w has a positive maximum at an interior point x0 , then w′′(x0) ≤ 0 and
w(x0) > 0. Since c > 0, this gives w′′(x0) − c(x0)w(x0) < 0, which is a contradiction.
If w(x) has a local negative minimum, then the function −w(x) has a local positive
maximum, which we have just shown cannot occur.

b) [Uniqueness] If you also know that w(0) = a and w(1) = b , prove that there is at most

one solution w(x) ∈ C2([0, 1]) with these properties.

Solution Say there are two functions u(x) and v(x) that satisfy w′′−c(x)w = 0 and have
the same boundary conditions. Let z(x) := u(x) − v(x). Then z ′′ − cz = 0 with z(0) = 0
and z(1) = 0. If z(x) is not identically zero, then it has either a positive maximum or a
negative minimum at an interior point. But by part a), this cannot happen. Thus z(x) = 0
everywhere in [0, 1]. Consequently u(x) = v(x) in this interval.

B–4. Let f(x) and K(x, y) be a given continuous real valued functions for x, y ∈ [0, 2], and, say
|K(x, y)| ≤M . Show that if 0 < a ≤ 2 is sufficntly small, the integral equation

u(x) = f(x) +

∫ x

0

K(x, y)u(y) dy

has a unique continuous solution u(x) for x ∈ [0, a] .

Solution We use the Principle of Contracting Mapping. For our complete metric space we
use C([0, a]) (with the uniform norm) for some 0 < a ≤ 2 which will be specified below. Let

Tϕ(x) := f(x) +

∫ x

0

K(x, y)ϕ(y) dy

and seek a fixed point u of T .

Clearly for all 0 < a ≤ 2 we have T : C([0, a]) to C([0, a]) . We need only show that T is
contracting for some a ≤ 2. But

Tϕ(x) − Tψ(x) =

∫ x

0

K(x, y) [ϕ(y) − ψ(y)] dy

so
|Tϕ(x) − Tψ(x)| ≤Ma‖ϕ− ψ‖.

Pick a < 1/M . Since the right side of the above inequality is independent of x ∈ [0, a] , then
with c = Ma ,

‖Tϕ− Tψ‖ ≤ c‖ϕ− ψ‖,

so T is contracting. Thus the original integral equation has a unique solution.

Remark. By modifying this reasoning we can even use a = 2. One approach to do this is to
show that some power of T is contracting on [0, 2].
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B–5. Let ϕn(t) be a sequence of smooth real-valued functions with the properties

(a) ϕn(t) ≥ 0, (b) ϕn(t) = 0 for |t| ≥ 1/n, (c)

∫ ∞

−∞
ϕn(t) dt = 1.

Note: because of (b), this integral is only over −1/n ≤ t ≤ 1/n .

Assume f(x) is uniformly continuous for all x ∈ R and define

fn(x) :=

∫ ∞

−∞
f(x− t)ϕn(t) dt.

Show that fn(x) converges uniformly to f(x) for all x ∈ R . [Suggestion: Use

f(x) = f(x)
(

∫ ∞
−∞ ϕn(t) dt

)

=
∫ ∞
−∞ f(x)ϕn(t) dt . Also, note explicitly where you use the

uniform continuity of f ].

Remark: One can show that the approximations fn are also smooth. Thus, this proves that
you can approximate a continuous function uniformly on any compact set by a smooth function.

Solution Using the suggestion,

fn(x) − f(x) =

∫

1/n

−1/n
[f(x− t) − f(x)]ϕn(t) dt.

Since f is uniformly continuous, given any ε > 0 there is a δ > 0 so that |f(y) − f(x)| < ε
for any x , y that satisfy |y − x| < δ . Pick some N with 1/N < δ . Then for any n ≥ N , if
|t| ≤ 1/n then |(x− t) − x| ≤ 1/n < δ so |f(x− t) − f(x)| < ε for all x ∈ R . Consequently

|fn(x) − f(x)| ≤ ε

∫

|t|≤1/n
ϕn(t) dt = ε.

Because the right side is independent of x , we have ‖fn − f‖ ≤ ε in the uniform norm.


