Math 508 December 4, 2008 Jerry L. Kazdan 10:30 – 11:50

DIRECTIONS This exam has two parts, Part A has 10 True-False problems (30 points, 3 points each). Part B has 5 traditional problems (70 points, 14 points each).

Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides.

Part A: True/False (answer only, no reasons). 10 problems, 3 points each). **Circle T** or **F** in in each problem.

- 1. **T F** A bounded sequence $\{a_n\}$ of real numbers always has a convergent subsequence. **True** Rudin, p. 51 Theorem 3.6b)
- 2. **T F** A series $\sum_{n=1}^{\infty} a_n$ of complex numbers converges if and only if the corresponding sequence of partial sums is bounded.

False EXAMPLE: $\sum (-1)^n$.

- 3. **T F** A closed and bounded subset of a complete metric space must be compact. **False** EXAMPLE: The unit sphere in ℓ_2 .
- 4. **T F** If A and B are compact subsets of a metric space, then $A \cup B$ is also compact. **True** Rudin, p.38 2.35 Corollary
- 5. **T F** If M is any metric space and $f: M \to \mathbb{R}$ is any continuous real-valued function, then the function $g: M \to \mathbb{R}$ defined by $g(x) := f(x)^2$ is always continuous.

True Given $x_0 \in M$ and $\epsilon > 0$, pick $\delta > 0$ so that if $d(x, x_0) < \delta$, then $|f(x) - f(x_0)| < \epsilon$. Let $M = |f(x_0)|$. Then

$$|g(x) - g(x_0)| = |f(x)^2 - f(x_0)^2| = |(f(x) - f(x_0))(f(x) - f(x_0) + 2f(x_0))| \le \epsilon(\epsilon + 2M).$$

6. T F If $f: X \to Y$ is a continuous map between metric spaces, and f(X) is compact, then X is compact.

False EXAMPLE: $X = \mathbb{R}, f(x) = 0$ for all $x \in \mathbb{R}$.

T F A compact subset of a metric space is always complete.
True Rudin, p. 54 (after Definition 3.12)

8. **T F** Let $\{x_n\}$ be a sequence of points in a metric space. If two subsequences of this sequence converge, then they must converge to the same number.

False EXAMPLE: In \mathbb{R} , $\{(-1)^n\}$.

9. **T F** If $f : [0, 1] \to \mathbb{R}$ is a continuous function and $\int_0^1 f(x) dx = 0$, then f(x) is positive somewhere and negative somewhere in this interval (unless it is identically zero).

True If f is not identically zero, then it is either positive somewhere or negative somewhere (or both). Say it is positive at x_0 . Then by continuity, it is positive in a neighborhood of x_0 . If $f(x) \ge 0$, everywhere, then $\int_0^1 f(x) dx > 0$, a contradiction. Thus f must be negative at some x_1 – and hence also in a neighborhood of x_1 .

10. **T F**
$$f(x) := \sum_{1}^{\infty} \frac{\sin(3^n \pi x)}{2^n}$$
 is a continuous function on \mathbb{R} .

True Since $\left|\frac{\sin(3^n\pi x)}{2^n}\right| \leq \frac{1}{2^n}$, by the Weierstrass M-Test the series converges uniformly and absolutely – and hence to a continuous function.

Part B: Traditional Problems (5 problems, 14 points each)

B-1. Let f: [-2, 2] be a smooth function with the property that

$$f(-1) = 1,$$
 $f(0) = 0,$ $f(1) = 2.$

Show that at some point $c \in (-1, 1)$ we have f''(c) > 0. In fact, find an explicit constant m > 0 so that $f''(c) \ge m$.

Solution By the mean value theorem applied to the intervals [-1, 0] and [0, 1] there are points $a \in (-1, 0)$ and $b \in (0, 1)$ so that f'(a) = -1 and f'(b) = 2. Applying the mean value theorem to f', we conclude there is a point $c \in (a, b)$ such that f''(c) = 3/(b-a) > 3/2.

B-2. Let A(t) and B(t) be $n \times n$ matrices that are differentiable for $t \in [a, b]$ and let $t_0 \in (a, b)$. Directly from the *definition* of the derivative, show that the product M(t) := A(t)B(t) is differentiable at $t = t_0$ and obtain the usual formula for $M'(t_0)$.

Solution [Caution: Usually A(t) and B(t) will not commute.]

$$\frac{M(t_0+h) - M(t_0)}{h} = \frac{A(t_0+h)B(t_0+h) - A(t_0)B(t_0)}{h}$$
$$= \frac{[A(t_0+h) - A(t_0)]}{h}B(t_0+h) + A(t_0)\frac{[B(t_0+h) - B(t_0)]}{h}.$$

Since both A and B are differentiable at t_0 , in the limit as $h \to 0$ we find that M is differentiable at t_0 and

$$M'(t_0) = A'(t_0)B(t_0) + A(t_0)B'(t_0)$$

- B-3. Let w(x) be a smooth function that satisfies w'' c(x)w = 0, where c(x) > 0 is a given function.
 - a) Show that w cannot have a local positive maximum (that is, a maximum at an interior point where the function is positive). Also show that w cannot have a local negative minimum.

Solution If w has a positive maximum at an interior point x_0 , then $w''(x_0) \le 0$ and $w(x_0) > 0$. Since c > 0, this gives $w''(x_0) - c(x_0)w(x_0) < 0$, which is a contradiction. If w(x) has a local negative minimum, then the function -w(x) has a local positive maximum, which we have just shown cannot occur.

b) [Uniqueness] If you also know that w(0) = a and w(1) = b, prove that there is at most one solution $w(x) \in C^2([0, 1])$ with these properties.

Solution Say there are two functions u(x) and v(x) that satisfy w'' - c(x)w = 0 and have the same boundary conditions. Let z(x) := u(x) - v(x). Then z'' - cz = 0 with z(0) = 0and z(1) = 0. If z(x) is not identically zero, then it has either a positive maximum or a negative minimum at an interior point. But by part a), this cannot happen. Thus z(x) = 0everywhere in [0, 1]. Consequently u(x) = v(x) in this interval.

B-4. Let f(x) and K(x,y) be a given continuous real valued functions for $x, y \in [0, 2]$, and, say $|K(x,y)| \leq M$. Show that if $0 < a \leq 2$ is sufficiently small, the integral equation

$$u(x) = f(x) + \int_0^x K(x, y) u(y) \, dy$$

has a unique continuous solution u(x) for $x \in [0, a]$.

Solution We use the Principle of Contracting Mapping. For our complete metric space we use C([0, a]) (with the uniform norm) for some $0 < a \leq 2$ which will be specified below. Let

$$T\varphi(x) := f(x) + \int_0^x K(x,y)\,\varphi(y)\,dy$$

and seek a fixed point u of T.

Clearly for all $0 < a \leq 2$ we have T : C([0, a]) to C([0, a]). We need only show that T is contracting for some $a \leq 2$. But

$$T\varphi(x) - T\psi(x) = \int_0^x K(x, y) \left[\varphi(y) - \psi(y)\right] dy$$

 \mathbf{SO}

$$|T\varphi(x) - T\psi(x)| \le Ma \|\varphi - \psi\|.$$

Pick a < 1/M. Since the right side of the above inequality is independent of $x \in [0, a]$, then with c = Ma,

$$||T\varphi - T\psi|| \le c ||\varphi - \psi||,$$

so T is contracting. Thus the original integral equation has a unique solution.

REMARK. By modifying this reasoning we can even use a = 2. One approach to do this is to show that some power of T is contracting on [0, 2].

B-5. Let $\varphi_n(t)$ be a sequence of smooth real-valued functions with the properties

(a)
$$\varphi_n(t) \ge 0$$
, (b) $\varphi_n(t) = 0$ for $|t| \ge 1/n$, (c) $\int_{-\infty}^{\infty} \varphi_n(t) dt = 1$

Note: because of (b), this integral is only over $-1/n \le t \le 1/n$. Assume f(x) is uniformly continuous for all $x \in \mathbb{R}$ and define

$$f_n(x) := \int_{-\infty}^{\infty} f(x-t)\varphi_n(t) \, dt.$$

Show that $f_n(x)$ converges uniformly to f(x) for all $x \in \mathbb{R}$. [SUGGESTION: Use $f(x) = f(x) \left(\int_{-\infty}^{\infty} \varphi_n(t) dt \right) = \int_{-\infty}^{\infty} f(x) \varphi_n(t) dt$. Also, note *explicitly* where you use the uniform continuity of f].

REMARK: One can show that the approximations f_n are also smooth. Thus, this proves that you can approximate a continuous function *uniformly* on any compact set by a smooth function.

Solution Using the suggestion,

$$f_n(x) - f(x) = \int_{-1/n}^{1/n} [f(x-t) - f(x)] \varphi_n(t) \, dt.$$

Since f is uniformly continuous, given any $\epsilon > 0$ there is a $\delta > 0$ so that $|f(y) - f(x)| < \epsilon$ for any x, y that satisfy $|y - x| < \delta$. Pick some N with $1/N < \delta$. Then for any $n \ge N$, if $|t| \le 1/n$ then $|(x - t) - x| \le 1/n < \delta$ so $|f(x - t) - f(x)| < \epsilon$ for all $x \in \mathbb{R}$. Consequently

$$|f_n(x) - f(x)| \le \epsilon \int_{|t| \le 1/n} \varphi_n(t) dt = \epsilon.$$

Because the right side is independent of x, we have $||f_n - f|| \le \epsilon$ in the uniform norm.