Two Inequalities for Integrals of Vector Valued Functions

Theorem Let $F : [a,b] \to \mathbb{R}^n$ be a continuous vector-valued function. Then

$$\left\|\int_{a}^{b} F(t) dt\right\| \leq \int_{a}^{b} \|F(t)\| dt$$

with equality if and only if there is a continuous scalar valued function $\varphi(t) \ge 0$ such that $F(t) = \varphi(t)V$ where $V := \int_a^b F(t) dt$.

Proof: We begin with the observation that for any vectors X and $V \neq 0$, the proof of the Schwarz inequality shows that $\langle X, V \rangle \leq ||X|| ||V||$ with equality if and only if X = cV for some constant $c \geq 0$. Thus if V is a constant vector, then for any t

$$\langle F(t), V \rangle \leq ||F(t)|| ||V||$$

with equality if and only if $F(t) = \varphi(t)V$ for some scalar valued function $\varphi(t) \ge 0$. Thus for any *V*

$$\langle \int_{a}^{b} F(t) dt, V \rangle = \int_{a}^{b} \langle F(t), V \rangle dt \leq \int_{a}^{b} |\langle F(t), V \rangle| dt \leq \int_{a}^{b} ||F(t)|| ||V|| dt = ||V|| \int_{a}^{b} ||F(t)|| dt$$

with equality if and only if $F(t) = \varphi(t)V$ for some continuous scalar valued function $\varphi(t) \ge 0$. To complete the proof we choose $V := \int_a^b F(t) dt$ so the left side of the above inequality becomes $||V||^2$ and then cancel ||V|| from both sides (unless V=0 in which case the theorem is trivial).

Corollary [MEAN VALUE INEQUALITY] Let $\gamma: [a,b] \to \mathbb{R}^n$ define a curve whose first derivative is continuous. Then

$$\|\gamma(b)-\gamma(a)\|\leq \int_a^b \|\gamma'(t)\|\,dt,$$

with equality if and only if $\gamma'(t) = \varphi(t)[\gamma(b) - \gamma(a)]$ for some continuous scalar valued function $\varphi(t) \ge 0$ (so the velocity vector is along the straight line from $\gamma(a)$ to $\gamma(b)$).

Since $\int_{a}^{b} \|\gamma'(t)\| dt$ can be interpreted as the *arc length* of the curve for $a \le t \le b$, this inequality has a natural geometric interpretation.

Proof: By the Fundamental Theorem of Calculus

$$\gamma(b) - \gamma(a) = \int_a^b \gamma'(t) dt.$$

Now apply the above theorem.