Problem Set 1

DUE: Thurs. Sept. 11, 2008. Late papers will be accepted until 1:00 PM Friday.

Many of these problems are from the Rudin text.

1. (Rudin, p. 23\#19) Suppose $a \in \mathbb{R}^{k}, b \in \mathbb{R}^{k}$, and $x \in \mathbb{R}^{k}$. Find all $c \in \mathbb{R}^{k}$ and $r>0$ (depending on a and b) such that $|x-a|=2|x-b|$ is satisfied if and only if $|x-c|=r$. [ANSWER: $3 c=4 b-a, 3 r=2|b-a|]$.
As an alternate, you may prefer the following generalization. For real $\lambda>0, \lambda \neq 1$, consider the points $x \in \mathbb{R}^{k}$ that satisfy

$$
|x-a|=\lambda|x-b| .
$$

Show that these points lie on a sphere. Part of this is to find the center and radius of this sphere in terms of a, b and λ. What if $\lambda=1$?
2. (Rudin, p. 43 \#2) A complex number is algebraic if it is a root of a polynomial $a_{0} z^{n}+\cdots+a_{n}$ whose coeffients are all integers. Prove that the set of all algebraic numbers is countable. [HinT: For every positive integer N there are only finitely many equations with $n+\left|a_{0}\right|+$ $\left.\cdots+\left|a_{n}\right|=N.\right]$
3. (Rudin, P. 43 \#3) Prove there exist real numbers that are not algebraic.
4. (Rudin, P. 43 \#4) Is the set of all irrational real numbers countable?
5. (Rudin, p. 22 \#6) The point of this problem is, for any real $b>1$ and any real x to define b^{x}. So far we can only compute b^{x} for the special cases $x=n$ and for $x=1 / n$, where $n=1,2, \ldots$. First we extend this to rational x and then to all real x.
Fix $b>1$. Let m, n, p, q be integers with $n>0, q>0$. Set $r=m / n=p / q$.
a) Prove that $\left(b^{m}\right)^{1 / n}=\left(b^{p}\right)^{1 / q}$. Thus, it makes sense to define $b^{r}=\left(b^{m}\right)^{1 / n}$.
b) If r and s are rational, prove that $b^{r+s}=b^{r} b^{s}$.
c) If x is real, define $B(x)$ to be the set of all numbers b^{t}, where t is rational and $t \leq x$. Prove that for r rational

$$
b^{r}=\sup B(r) .
$$

Hence it makes sense to define $b^{x}=\sup B(x)$ for all real x.
d) With this definition, prove that for all real $x, y: b^{x+y}=b^{x} b^{y}$.
6. (Rudin, p. 23 \#17) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ with the Euclidean distance, prove that

$$
|\mathbf{x}+\mathbf{y}|^{2}+|\mathbf{x}-\mathbf{y}|^{2}=2|\mathbf{x}|^{2}+2|\mathbf{y}|^{2} .
$$

Interpret this geometrically as a statement about parallelograms.
[Last revised: September 8, 2008]

