Homework Set 10 (Due: Never)

1. An $n \times n$ matrix $R: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an orthogonal matrix if it preserves the length of each vector $x \in \mathbb{R}^{n}$, that is,

$$
\|R x\|=\|x\| \quad \text { for all } \quad x \in \mathbb{R}^{n} .
$$

a) If R and S are both $n \times n$ orthogonal matrices, show that their product, $S R$ is also an orthogonal matrix [thus they form a group].
b) Show that the set of $n \times n$ orthogonal matrices form a compact set in $\mathbb{R}^{n^{2}}$.
2. Show that the function $F(x):=\sum_{k=1}^{\infty} \frac{\cos \left(k^{2} x\right)}{k^{2}+x^{2}}$ is continuous for all real x.
3. Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ and say the power series has radius of convergence R. Let $r<R$.
a) Show that the series for the formal derivative $f^{\prime}(z)=\sum_{0}^{\infty} n a_{n} z^{n-1}$ converges uniformly in the disc $\{|z| \leq r\}$.
b) Conclude that the function $f \in C^{\infty}(|z|<1)$.
4. Let $f \in C([0, \infty])$ be a continuous function with the property that $\lim _{x \rightarrow \infty} f(x)=c$. Show that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f(x) d x=c
$$

5. Let $K(x, y)$ be a continuous function of x and y for x and y in the interval $[0,1]$ and let

$$
h(x)=\int_{0}^{1} K(x, y) d y .
$$

Show that $h(x)$ is a continuous function of x for $x \in[0,1]$.
6. a) If $f(x)$ and $K(x, y)$ are continuous function of x and y for x and y in the interval $0 \leq x \leq 1$, show that if $|\lambda|$ is sufficiently small, then the integral equation

$$
u(x)=f(x)+\lambda \int_{0}^{1} K(x, y) u(y) d y
$$

has a unique solution $u \in C([0,1])$.
b) Investigate the integral equation

$$
u(x)=f(x)+\lambda \int_{0}^{1} e^{x-y} u(y) d y
$$

and find all $\lambda \in \mathbb{R}$ for which this has a unique solution for any $f \in C([0,1])$. The result shows the smallness requirement on λ in part a) cannot be removed completely. [This is short, explicit, and elementary - but perhaps not obvious. Write $\int_{0}^{1} e^{x-y} u(y) d y=$ $\left.e^{x} \int_{0}^{1} e^{-y} u(y) d y\right]$.

