Homework Set 3

DuE: Tues. Sept. 30, 2008. Late papers accepted until 1:00 Wednesday.

1. (Rudin, p. 44 \#20) Are the closures and interiors of connected sets always connected? [Look at subsets of \mathbb{R}^{2}.]
2. Let K be a compact set in a metric space \mathcal{M} and let $p \in \mathscr{M}$ be a point not in K. Define the distance $d(p, K)$ between p and K as

$$
d(p, K)=\inf _{x \in K} d(p, x) .
$$

a) Show there is at least one point $q \in K$ that has this minimum distance, so $d(p, q)=$ $d(p, K)$
b) Is there a unique such point q ? Proof or counterexample.
c) Is the assertion in part a) still true if you only assume that K is a closed (but not compact) subset of \mathbb{R}^{2} ? Proof or counterexample.
3. a) Calculate $\lim _{n \rightarrow \infty} \frac{5 n+17}{n+2}$.
b) Let $a_{n}:=\frac{3 n^{2}-2 n+17}{n^{2}+21 n+2}$. Calculate $\lim _{n \rightarrow \infty} a_{n}$.
4. (Rudin, p. 78 \#2) Calculate $\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n$.
5. If $c>0$, show that $\frac{c^{n}}{n!} \rightarrow 0$ as $n \rightarrow \infty$.
6. If $b>1$ and $s \in \mathbb{R}$, show that $\frac{n^{s}}{b^{n}} \rightarrow 0$ as $n \rightarrow \infty$.
7. (Rudin, p. $78 \# 3$)Let $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}}, n=1,2,3, \ldots$. Prove that $\left\{s_{n}\right\}$ converges to some number s and that $s_{n}<2$.
8. (Rudin, p. 78 \#5) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be any real bounded sequences.
a) Show that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

provided the sum on the right is not of the form $\infty-\infty$.
b) Give an explicit example where strict inequality can occur.
9. Let $p_{k}=\left(x_{k}, y_{k}\right) \in \mathbb{R}^{2}, k=1,2, \ldots$ be a sequence of points in the plane (with the usual Euclidean metric). Show that $\left\{p_{k}\right\}$ converges to $p=(x, y)$ if and only if $x_{k} \rightarrow x$ and $y_{k} \rightarrow y$.
10. [NEWTON] Let $A>0$ and $x_{1}>0$. Define $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{A}{x_{n}}\right)$. The following steps show that $x_{n} \rightarrow \sqrt{A}$.
a) Show that after the first term, the sequence $\left\{x_{n}\right\}$ is monotonically decreasing and that $x_{2}^{2} \geq A$ (hence $x_{n}^{2} \geq A$ for $n \geq 2$).
b) Show the x_{n} converge to some real number L and, using the definition of x_{n}, that $L^{2}=A$.
11. Given a real sequence $\left\{a_{k}\right\}$, let $C_{n}=\frac{a_{1}+\cdots+a_{n}}{n}$ be the sequence of averages (arithmetic mean).
a) Give an example where the a_{n} 's doesn't converge but the averages do converge.
b) If the averages converge, must the a_{n} 's be bounded? (Proof or counterexample)
c) If a_{k} converges to A, show that also C_{n} converges, and to A.
d) If $b_{k} \in \mathbb{R}$ are positive and $b_{k} \rightarrow B$, show that their geometric mean also converge to B, that is $\left[b_{1} b_{2} \cdots b_{n}\right]^{1 / n} \rightarrow B$.
12. If $\left\{b_{k}\right\}$ is a sequence of positive numbers, prove the arithmetic-geometric mean inequality

$$
\left[b_{1} b_{2} \cdots b_{n}\right]^{1 / n} \leq \frac{b_{1}+\cdots+b_{n}}{n}
$$

When does equality hold?
[Last revised: September 30, 2008]

