Homework Set 3

DUE: Tues. Sept. 30, 2008. Late papers accepted until 1:00 Wednesday.

- 1. (Rudin, p.44 #20) Are the closures and interiors of connected sets always connected? [Look at subsets of \mathbb{R}^2 .]
- 2. Let *K* be a compact set in a metric space \mathcal{M} and let $p \in \mathcal{M}$ be a point *not* in *K*. Define the distance d(p, K) between *p* and *K* as

$$d(p,K) = \inf_{x \in K} d(p,x).$$

- a) Show there is at least one point $q \in K$ that has this minimum distance, so d(p,q) = d(p,K)
- b) Is there a *unique* such point q? Proof or counterexample.
- c) Is the assertion in part a) still true if you only assume that *K* is a closed (but not compact) subset of \mathbb{R}^2 ? Proof or counterexample.
- 3. a) Calculate $\lim_{n \to \infty} \frac{5n+17}{n+2}$. b) Let $a_n := \frac{3n^2 - 2n + 17}{n^2 + 21n + 2}$. Calculate $\lim_{n \to \infty} a_n$.
- 4. (Rudin, p.78 #2) Calculate $\lim_{n \to \infty} \sqrt{n^2 + n} n$.
- 5. If c > 0, show that $\frac{c^n}{n!} \to 0$ as $n \to \infty$.
- 6. If b > 1 and $s \in \mathbb{R}$, show that $\frac{n^s}{b^n} \to 0$ as $n \to \infty$.
- 7. (Rudin, p.78 #3)Let $s_1 = \sqrt{2}$, and $s_{n+1} = \sqrt{2 + \sqrt{s_n}}$, n = 1, 2, 3, ... Prove that $\{s_n\}$ converges to some number *s* and that $s_n < 2$.
- 8. (Rudin, p. 78 #5) Let $\{a_n\}$ and $\{b_n\}$ be any real bounded sequences.

a) Show that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

provided the sum on the right is not of the form $\infty - \infty$.

- b) Give an explicit example where strict inequality can occur.
- 9. Let $p_k = (x_k, y_k) \in \mathbb{R}^2$, k = 1, 2, ... be a sequence of points in the plane (with the usual Euclidean metric). Show that $\{p_k\}$ converges to p = (x, y) if and only if $x_k \to x$ and $y_k \to y$.
- 10. [NEWTON] Let A > 0 and $x_1 > 0$. Define $x_{n+1} = \frac{1}{2} \left(x_n + \frac{A}{x_n} \right)$. The following steps show that $x_n \to \sqrt{A}$.
 - a) Show that after the first term, the sequence $\{x_n\}$ is monotonically decreasing and that $x_2^2 \ge A$ (hence $x_n^2 \ge A$ for $n \ge 2$).
 - b) Show the x_n converge to some real number L and, using the definition of x_n , that $L^2 = A$.
- 11. Given a real sequence $\{a_k\}$, let $C_n = \frac{a_1 + \dots + a_n}{n}$ be the sequence of averages (*arithmetic mean*).
 - a) Give an example where the a_n 's doesn't converge but the averages do converge.
 - b) If the averages converge, must the a_n 's be bounded? (Proof or counterexample)
 - c) If a_k converges to A, show that also C_n converges, and to A.
 - d) If $b_k \in \mathbb{R}$ are positive and $b_k \to B$, show that their *geometric mean* also converge to *B*, that is $[b_1b_2\cdots b_n]^{1/n} \to B$.
- 12. If $\{b_k\}$ is a sequence of positive numbers, prove the arithmetic-geometric mean inequality

$$[b_1b_2\cdots b_n]^{1/n}\leq rac{b_1+\cdots+b_n}{n}.$$

When does equality hold?

[Last revised: September 30, 2008]