Homework Set 4

DUE: Thurs. Oct. 9, 2008. Late papers accepted until 1:00 Friday in Peter Du's office: DRL 4C21.

1. (Rudin, p.78 #6) Investigate the convergence or divergence of $\sum a_n$ if

a).
$$a_n = \sqrt{n+1} - \sqrt{n}$$
 b). $a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$ c). $a_n = \frac{1}{1+z^n}$ (complex z)

- 2. (Rudin p. 79 #8) Assume $a_n > 0$. If $\sum a_n$ converges and $\{b_n\}$ is bounded, prove that $\sum a_n b_n$ converges.
- 3. (Rudin p. 79 #9) Find the radius of convergence of each of the following power series.

a).
$$\sum n^{3} z^{n}$$
, b). $\sum \frac{2^{n}}{n!} z^{n}$ c). $\sum n! z^{n}$

4. Let $\{a_n\} \in \mathbb{R}$ be a bounded sequence. If x > 1 show that $\sum \frac{a_n}{n^x}$ converges absolutely.

- 5. (Rudin, p. 78 #7) If $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n$ converges, show that $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. [SUGGESTION: $0 \le (x-y)^2 = x^2 - 2xy + y^2$ for all real x, y.]
- 6. Determine if the following series converges or diverges:

$$1 + \frac{1}{2} - \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \frac{1}{6} - \frac{1}{7} - \frac{1}{8} + \dots$$

(the sign pattern is ++--++--++...).

The next three problems are variations on just one idea.

7. Let $\{a_n\}$ be a sequence of real numbers with the property that

$$|a_{k+1}-a_k| \le \frac{1}{2}|a_k-a_{k-1}|, \qquad k=1,2,\ldots.$$

Show that this sequence converges to some real number.

- 8. a) Let $X_j, j = 1, 2, ...$ be a sequence of points in \mathbb{R}^3 . If $||X_{j+1} X_j|| \le \frac{1}{j^4}$, show that these points converge.
 - b) Let $\{X_j\}$ be a sequence of points in \mathbb{R}^n with the property that

$$\sum_{j} \|X_{j+1} - X_j\| < \infty$$

Prove that the sequence $\{X_j\}$ converges. Give an example of a convergent sequence that does not have this property.

- 9. In a metric space *M* let d(x,y) denote the distance. A sequence x_j is called a *fast* Cauchy sequence if $\sum_j d(x_{j+1}, x_j) < \infty$.
 - a) In \mathbb{R} give an example of a fast Cauchy sequence and also of a Cauchy sequence that is *not* fast.
 - b) Show that every fast Cauchy sequence is indeed a Cauchy sequence.
 - c) If there is a constant 0 < c < 1 such that for all j

$$d(x_{j+1}, x_j) < cd(x_j, x_{j-1})$$

show that x_j is a fast Cauchy sequence.

[Last revised: October 13, 2008]