Math 508, Fall 2008

Jerry Kazdan

Homework Set 5

DUE: Thurs. Oct. 23, 2008. Late papers accepted until 1:00 Friday.

- 1. a) Let A be a subset of the real numbers. Prove that the following statements are equivalent:
 - A is closed.
 - Every sequence $x_n \in A$ such that $\sum_{n=1}^{\infty} ||x_{n+1} x_n|| < \infty$ converges to a limit in A.
 - b) Show this is also true for subsets A of the plane \mathbb{R}^2 with the usual euclidian norm.
- 2. Let ℓ_2 be the usual normed linear space space of infinite sequences sequences $X=(x_1,x_2,\ldots)$ with finite norm: $\|X\|:=\sqrt{\sum_{j=1}^{\infty}|x_j|^2}<\infty$. Prove that ℓ_2 is *complete*. [SUGGESTION: See the similar proof that ℓ_1 is complete on the class web page.]
- 3. Let V and W be normed linear spaces and $L: V \to W$ a linear map, so L(X+Y) = LX + LY and L(cX) = cLX. Define the *norm* of L by

$$||L|| := \sup_{X \neq 0} \frac{||LX||_W}{||X||_V}.$$

We say that *L* is *bounded* if $||L|| < \infty$

- a) The set $\mathcal{L}(V,W)$ of all linear maps from V to W is itself a linear space since one can add maps, L+M, and multiply them by scalars, cL. Show that ||L|| defines a norm on $\mathcal{L}(V,W)$, that is,
 - i). $||L|| \ge 0$, with ||L|| = 0 only if L = 0,
 - ii). ||cL|| = |c|||L|| for any scalar c,
 - ii). $||L+M|| \le ||L|| + ||M||$ (triangle inequality).
- b) Show that $||L|| = \sup_{||X||_V = 1} ||LX||_W$.
- c) Let $A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & 0 \end{pmatrix}$ define a linear map from \mathbb{R}^3 to \mathbb{R}^2 with the usual euclidean norms. Show that A is bounded. (You need not compute ||A||, only get an upper bound for it).
- d) If $L: \mathbb{R}^k \to \mathbb{R}^n$ is given by any $n \times k$ matrix and both \mathbb{R}^k and R^n have the Euclidean norm, show that L is bounded.
- e) Show that if $L: \ell_2 \to \ell_2$ is defined by

$$LX := (c_1x_1, c_2x_2, c_3x_3, \ldots),$$

where c_i is a bounded sequence of complex numbers, then L is bounded.

f) Show that if $L: \ell_2 \to \ell_2$ is defined by

$$LX := (x_1, 2x_2, \dots, nx_n, \dots)$$

is *not* a bounded linear map.

- 4. [CONTINUATION] Show that a linear map $L: V \to W$ is continuous at any point X_0 if and only if L is continuous at the origin.
- 5. [CONTINUATION] Show that a linear map $L: V \to W$ is continuous if and only if it is bounded.
- 6. Let $f: \mathbb{R}^n \to \mathbb{R}^k$ have the property that for some constant m one has

$$||f(x) - f(\hat{x})|| \le m||x - \hat{x}||$$
 for all $x, \hat{x} \in \mathbb{R}^n$.

Show that f is uniformly continuous on \mathbb{R}^n .

REMARK: We will later show that if f is differentiable and its derivative is bounded by m, then it has the above property. This is one version of the *mean value theorem*.

7. Let $f : \mathbb{R} \to \mathbb{R}$ have the property that $|f(x) - f(\hat{x})| \le c|x - \hat{x}|$ for all real x, \hat{x} , and where $0 \le c < 1$ is a constant. Given any starting point x_0 , define x_j , $j = 1, 2, \ldots$, recursively by the rule

$$x_{j+1} = f(x_j).$$

Prove that the x_j converge to some real number, say z, and that f(z) = z. In other words, z is a *fixed point* of f.