Homework Set 5

DuE: Thurs. Oct. 23, 2008. Late papers accepted until 1:00 Friday.

1. a) Let A be a subset of the real numbers. Prove that the following statements are equivalent:

- A is closed.
- Every sequence $x_{n} \in A$ such that $\sum_{n=1}^{\infty}\left\|x_{n+1}-x_{n}\right\|<\infty$ converges to a limit in A.
b) Show this is also true for subsets A of the plane \mathbb{R}^{2} with the usual euclidian norm.

2. Let ℓ_{2} be the usual normed linear space space of infinite sequences sequences $X=\left(x_{1}, x_{2}, \ldots\right)$ with finite norm: $\|X\|:=\sqrt{\sum_{j=1}^{\infty}\left|x_{j}\right|^{2}}<\infty$. Prove that ℓ_{2} is complete. [SUGGESTION: See the similar proof that ℓ_{1} is complete on the class web page.]
3. Let V and W be normed linear spaces and $L: V \rightarrow W$ a linear map, so $L(X+Y)=L X+L Y$ and $L(c X)=c L X$. Define the norm of L by

$$
\|L\|:=\sup _{X \neq 0} \frac{\|L X\|_{W}}{\|X\|_{V}}
$$

We say that L is bounded if $\|L\|<\infty$
a) The set $\mathcal{L}(V, W)$ of all linear maps from V to W is itself a linear space - since one can add maps, $L+M$, and multiply them by scalars, $c L$. Show that $\|L\|$ defines a norm on $\mathcal{L}(V, W)$, that is,
i). $\|L\| \geq 0$, with $\|L\|=0$ only if $L=0$,
ii). $\|c L\|=|c|\|L\|$ for any scalar c,
ii). $\|L+M\| \leq\|L\|+\|M\|$ (triangle inequality).
b) Show that $\|L\|=\sup _{\|X\|_{V}=1}\|L X\|_{W}$.
c) Let $A=\left(\begin{array}{rrr}0 & 1 & -1 \\ 1 & 2 & 0\end{array}\right)$ define a linear map from \mathbb{R}^{3} to \mathbb{R}^{2} with the usual euclidean norms. Show that A is bounded. (You need not compute $\|A\|$, only get an upper bound for it).
d) If $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is given by any $n \times k$ matrix and both \mathbb{R}^{k} and R^{n} have the Euclidean norm, show that L is bounded.
e) Show that if $L: \ell_{2} \rightarrow \ell_{2}$ is defined by

$$
L X:=\left(c_{1} x_{1}, c_{2} x_{2}, c_{3} x_{3}, \ldots\right),
$$

where c_{j} is a bounded sequence of complex numbers, then L is bounded.
f) Show that if $L: \ell_{2} \rightarrow \ell_{2}$ is defined by

$$
L X:=\left(x_{1}, 2 x_{2}, \ldots, n x_{n}, \ldots\right)
$$

is not a bounded linear map.
4. [CONTINUATION] Show that a linear map $L: V \rightarrow W$ is continuous at any point X_{0} if and only if L is continuous at the origin.
5. [CONTINUATION] Show that a linear map $L: V \rightarrow W$ is continuous if and only if it is bounded.
6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ have the property that for some constant m one has

$$
\|f(x)-f(\hat{x})\| \leq m\|x-\hat{x}\| \quad \text { for all } \quad x, \hat{x} \in \mathbb{R}^{n} .
$$

Show that f is uniformly continuous on \mathbb{R}^{n}.
REMARK: We will later show that if f is differentiable and its derivative is bounded by m, then it has the above property. This is one version of the mean value theorem.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ have the property that $|f(x)-f(\hat{x})| \leq c|x-\hat{x}|$ for all real x, \hat{x}, and where $0 \leq c<1$ is a constant. Given any starting point x_{0}, define $x_{j}, j=1,2, \ldots$, recursively by the rule

$$
x_{j+1}=f\left(x_{j}\right)
$$

Prove that the x_{j} converge to some real number, say z, and that $f(z)=z$. In other words, z is a fixed point of f.

