Homework Set 6

Due: Thurs. Oct. 30, 2008. Late papers accepted until 1:00 Friday.

1. Let \mathcal{M} and \mathcal{N} be metric spaces and $f: \mathscr{M} \rightarrow \mathcal{N}$ be a continuous map. Say $f: p \mapsto q$ and $r \in \mathcal{N}$ with $r \neq q$. Show there is some neighborhood of p whose image does not contain r. In other words, there is some open set $U \subset \mathscr{M}$ containing p with the property that $r \notin f(U)$.
2. Let f be a continuous map from $[0,1]$ to itself. Show that f has at least one fixed point, that is, a point c so that $f(c)=c$.
3. Show that at any time there are at least two diamentically opposite points on the equator of the earth with the same temperature.
4. [Rudin, p. 98 \# 3]. Let \mathscr{M} be a metric space and $f: \mathcal{M} \rightarrow \mathbb{R}$ a continuous function. Denote by $Z(f)$ the zero set of f. These are the points $p \in \mathscr{M}$ where f is zero, $f(p)=0$.
a) Show that $Z(f)$ is a closed set.
b) [See also Rudin, p. 101 \#20] Given any set $E \in \mathscr{M}$, the distance of a point x to E is defined by

$$
h(x)=\rho_{E}(x):=\inf _{z \in E} d(x, z) .
$$

Show that h is a uniformly continuous function.
c) Use the previous part to show that given any closed set $E \in \mathscr{M}$, there is a continuous function that is zero on E and positive elsewhere.
5. [Rudin, p. $99 \# 7]$. For points $(x, y) \neq(0,0) \in \mathbb{R}^{2}$, define

$$
f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}} \quad \text { and } \quad g(x, y)=\frac{x y^{2}}{x^{2}+y^{6}}
$$

while define $f(0,0)=0$ and $g(0,0)=0$.
a) Show that f is bounded in \mathbb{R}^{2} but not continuous at the origin, while g is unbounded in every neighborhood of the origin and hence also not continuous there.
b) Let $S \in \mathbb{R}^{2}$ be any straight line through the origin. Show that if the points (x, y) are stricted to lie on S, then both $f(x, y)$ and $g(x, y)$ are continuous. Moral: It can be misleading to understand a function by only examining it on straight lines.
6. Let $f(x)$ be a continuous real-valued function with the property

$$
f(x+y)=f(x)+f(y)
$$

for all real x, y. Show that $f(x)=c x$ for some constant c. [REMARK: There is a very short proof if you assume f is differentiable].
7. [Partly from Rudin, p. 99 \# 8]. Let $E \subset \mathbb{R}$ be a set and $f: E \rightarrow \mathbb{R}$ be uniformly continuous.
a) If E is a bounded set, show that $f(E)$ is a bounded set.
b) If E is not bounded, give an example showing that $f(E)$ might not be bounded.
c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous on all of \mathbb{R}, show there are constants a and b so that

$$
|f(x)| \leq a+b|x|
$$

8. Define $f(z)$ for complex z by the power series $f(z):=\sum_{k=0}^{\infty} a_{k} z^{k}$,

Assume this series converges in the disk $|z|<R$. Prove that f is continuous at every point of this (open) disk.
9. [Rudin, p. 99 \# 13 or \#11, see also p. 98 \#4] extension by continuity Let X be a metric space, $E \subset X$ a dense subset, and $f: E \rightarrow \mathbb{R}$ a uniformly continuous function. Show that f has a unique continuous extension to all of X. That is, there is a unique continuous function $g: X \rightarrow \mathbb{R}$ with the property that $g(p)=f(p)$ for all $p \in X$. [REMARK: One generalize this by replacing \mathbb{R} by any complete metric space.]

