Homework Set 7

Due: Thurs. Nov. 6, 2008. Late papers accepted until 1:00 Friday.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Which of the following are uniformly continuous in the set $\{x \geq 0\}$? Justify your assertions.
a). $f(x)=2+3 x$
b). $g(x)=\sin 2 x$
c). $h(x)=x^{2}$
d). $k(x)=\sqrt{x}$,
2. Let a smooth function $g(x)$ have the three properties: $g(0)=2 \quad g(1)=0 \quad g(4)=6$. Show that at some point $0<c<4$ one has $g^{\prime \prime}(c)>0$. Better yet, find a number $m>0$ so that $g^{\prime \prime}(c) \geq m>0$.
Is it true that $g^{\prime \prime}$ must be positive at at least one point $0<c<1$? Proof or counterexample.
3. a) Show that $\sin x$ is not a polynomial.
b) Show that $\sin x$ is not a rational function, that is, it cannot be the quotient of two polynomials.
c) Let $f(t)$ be periodic with period 1 , so $f(t+1)=f(t)$ for all real t. If f is not a constant, show that it cannot be a rational function. that is, f cannot be the quotient of two polynomials.
d) Show that e^{x} is not a rational function.
4. a) If a smooth function $f(x)$ has the property that $f^{\prime \prime}(x) \geq 0$ for all x, show that it is convex, that is, at every point the graph of the curve $y=f(x)$ lies above all its tangent lines.
b) Let $v(x)$ be a smooth real-valued function for $0 \leq x \leq 1$. If $v(0)=v(1)=0$ and $v^{\prime \prime}(x)>0$ for all $0 \leq x \leq 1$, show that $v(x) \leq 0$ for all $0 \leq x \leq 1$.
c) Prove that the function e^{x} is convex.
d) Show that $e^{x} \geq 1+x$ for all real x.
5. a) Let $p(x):=x^{3}+c x+d$, where c, and d are real. Under what conditions on c and d does this has three distinct real roots? [ANSWER: $c<0$ and $d^{2}<-4 c^{3} / 27$].
b) Generalize to the real polynomial $p(x):=a x^{3}+b x^{2}+c x+d(a \neq 0)$ by a change of variable $t=x-\alpha$ (with a clever choice of α) to reduce to the above special case.
6. If $h: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function that satisfies $h^{\prime}(t) \leq \operatorname{ch}(t)$, where c is a constant, show that $h(t) \leq e^{c t} h(0)$ for all $t \geq 0$.
7. Say $u(t)$ satisfies $u^{\prime \prime}+b(t) u^{\prime}+c(t) u=0$, where $b(t)$ and $c(t)$ are bounded functions. Let $E(t):=\frac{1}{2}\left(u^{\prime 2}+u^{2}\right)$.
a) Show that $E^{\prime}(t) \leq \gamma E(t)$, where γ is a constant. [SUGGESTION: Use the inequality $\left.|2 x y| \leq x^{2}+y^{2}\right]$.
b) Use the result of the previous problem to deduce that if $u(0)=0$ and $u^{\prime}(0)=0$, then $u(t)=0$ for all t.
8. Let $w(x)$ be a smooth function that satisfies $w^{\prime \prime}-c(x) w=0$, where $c(x)>0$ is a given function, show that w cannot have a local positive maximum (that is, a local maximum where the function is positive). Also show that w cannot have a local negative minimum.
9. a) For any integer $n \geq 0$, show that $\lim _{x \searrow 0} \frac{e^{-1 / x}}{x^{n}}=0$.
b) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{ll}
e^{-\frac{1}{x}} & \text { for } x>0 \\
0 & \text { for } x \leq 0
\end{array} .\right.
$$

Sketch the graph of f.
c) Show that f is a smooth function for all real x.
d) Show that each of the following are smooth and sketch their graphs:

$$
\begin{aligned}
& g(x)=f(x) f(1-x) \\
& h(x)=\frac{f(x)}{f(x)+f(1-x)} \\
& k(x)=h(x) h(4-x) \\
& K(x)=k(x+2), \\
& \varphi(x, y)=K(x) K(y),(x, y) \in \mathbb{R}^{2} \\
& \Phi(x)=K(\|x\|), x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
\end{aligned}
$$

10. [Interpolation] Let $x_{0}<x_{1}<x_{2}$ be distinct real numbers and $f(x)$ a smooth function.
a) Show there is a unique quadratic polynomial $p(x)$ with the property that $p\left(x_{j}\right)=f\left(x_{j}\right)$ for $j=0,1,2$.
b) [Remainder term in interpolation] If b is in the open interval $\left(x_{0}, x_{2}\right)$ with $b \neq x_{j}, j=$ $0,1,2$, show there is a point c (depending on b) in the interval $\left(x_{0}, x_{2}\right)$ so that

$$
f(b)=p(b)+\frac{f^{\prime \prime \prime}(c)}{3!}\left(b-x_{0}\right)\left(b-x_{1}\right)\left(b-x_{2}\right) .
$$

This estimate is related to the procedure used to find the remainder in a Taylor polynomial. [Suggestion: Define the constant M by

$$
f(b)=p(b)+M\left(b-x_{0}\right)\left(b-x_{1}\right)\left(b-x_{2}\right),
$$

and look at

$$
\left.g(x):=f(x)-\left[p(x)+M\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right] .\right]
$$

