Homework Set 8

Due: Thurs. Nov. 13, 2008. Late papers accepted until 1:00 Friday.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Let $\mathbf{r}(t)$ define a smooth curve that does not pass through the origin.
a) If the point $\mathbf{a}=\mathbf{r}\left(t_{0}\right)$ is a point on the curve that is closest to the origin (and not an end point of the curve), show that the position vector $\mathbf{r}\left(t_{0}\right)$ is perpendicular to the tangent vector $\mathbf{r}^{\prime}\left(t_{0}\right)$.
b) What can you say about a point $\mathbf{b}=\mathbf{r}\left(t_{1}\right)$ that is furthest from the origin?
2. Consider two smooth plane curves $\gamma_{1}, \gamma_{2}:(0,1) \rightarrow \mathbb{R}^{2}$ that do not intersect. Suppose P_{1} and P_{2} are interior points on γ_{1} and γ_{2}, respectively, such that the distance $\left|P_{1} P_{2}\right|$ is minimal. Prove that the straight line $P_{1} P_{2}$ is perpendicular to both curves.
3. Say $\gamma(t): \mathbb{R} \rightarrow \mathbb{R}^{2}$ defines a smooth curve in the plane.
a) If $\gamma(0)=0$ and $\left\|\gamma^{\prime}(t)\right\| \leq c$, show that for any $T \geq 0,\|\gamma(T)\| \leq c T$. Moreover, show that equality can occur if and only if one has $\gamma(t)=v t$ where v is a vector that does not depend on t.
4. Let $\gamma(t)=(x(t), y(t))$ define a curve in the plane parametrized by t. We say the parametrization is smooth if the functions $x(t), y(t)$ are smooth and the velocity, $\gamma^{\prime}(t) \neq 0$ [see part (b) below for why we require that $\gamma^{\prime}(t) \neq 0$].
a) Find a smooth parameterization of the curve $y=x^{2}$.
b) The curve $y=|x|$ for $-1 \leq x \leq 1$ is clearly not smooth at $x=0$ - but it has a parameterization $\gamma(t)=(x(t), y(t))$ with both $x(t)$ and $y(t)$ smooth everywhere. However $\gamma^{\prime}(t)$ will be zero at the corner [intuition: if $\gamma(t)$ describes the position of a particle, have the partcle slow down to a stop near corners].
Use the function defined in Homework Set 7, Problem 9(b) to find smooth functions $x(t)$, $y(t)$ that parameterize $y=|x|$ for $-1 \leq x \leq 1$.
5. [Derivative of the Determinant] Let $A(t)$ be a family of square matrices whose elements depend smoothly on a real parameter t.
a) If $A(0)=I$, show that

$$
\left.\frac{d \operatorname{det} A(t)}{d t}\right|_{t=0}=\operatorname{trace} A^{\prime}(0)
$$

[The trace of a matrix is the sum of the elements on the diagonal].
b) If $A(t)$ is invertible, compute the derivative of the determinant of $A(t)$ at $t=t_{0}$. [SUGGESTION: Let $B(t)=A(t) A^{-1}\left(t_{0}\right)$ and use the previous part.]
6. Since the function $f(x):=x^{2}$ is monotonic, by what we showed in class, it is Riemann integrable. Using a partition with each interval having equal width, directly compute

$$
\int_{0}^{a} x^{2} d x
$$

In case it helps, $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.

