Homework Set 9

DuE: Tues. Nov. 25, 2008. Late papers accepted until 1:00 Wednesday.

1. Find a continous function f and a constant C so that $\int_{0}^{x} f(t) d t=x \cos x+8 e^{x}+C$.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function.
a) If $\int_{0}^{1} f(x) d x=0$, prove that $f(x)$ is positive somewhere and negative somewhere in this interval (unless it is identically zero).
b) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all continuous functions g prove that $f(x)=0$ for all $x \in[0,1]$.
c) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all C^{1} functions g that satisfy $g(0)=g(1)=0$, must it be true that $f(x)=0$ for all $x \in[0,1]$? Proof or counterexample.
3. [HöLDER'S INEQUALITY] Let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
a) Show that $s t \leq \frac{s^{p}}{p}+\frac{t^{q}}{q}$ for all $s, t>0$.
[SUGGESTION: There are many ways to prove this. One is to show that for any $a>0$ and $s \geq 0$ the maximum of $h(s):=a s-s^{p} / p$ occurs at $s=a^{1 /(p-1)}$.]
b) Use this to show that for any complex numbers a_{k}, b_{k}

$$
\sum_{k=1}^{n}\left|a_{k} b_{k}\right| \leq\left[\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right]^{1 / p}\left[\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right]^{1 / q} .
$$

[SUGGESTION: First do the special case $\left[\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right]^{1 / p}=1$ and $\left[\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right]^{1 / q}=1$. Then reduce the general case to this special case.]
If $p=q=1 / 2$ this is the Schwarz inequality.
c) Similarly, show that for any continuous functions f, g

$$
\int_{a}^{b}|f(x) g(x)| d x \leq\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{1 / p}\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{1 / q}
$$

4. Let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. and let $X:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $f \in \mathbb{C}([a, b])$. Use Hölder's inequality (above) to prove the triangle inequality for the norms

$$
\|X\|_{p}:=\left[\sum_{k=1}^{n}\left|x_{k}\right|^{\mid}\right]^{1 / p} \quad \text { and } \quad\|f\|_{p}:=\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{1 / p}
$$

5. Continuing the notation of the previous problem, define the norms

$$
\|X\|_{\infty} ;=\max _{k}\left\{\left|x_{k}\right|\right\} \quad \text { and } \quad\|f\|_{\infty}:=\max _{x \in[a, b]}|f(x)| .
$$

a) Show that $\lim _{p \rightarrow \infty}\|X\|_{p}=\|X\|_{\infty}$.
b) Show that $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$
6. Compute $\lim _{\lambda \rightarrow \infty} \int_{0}^{1}|\sin (\lambda x)| d x$.
7. Let $f(x)$ be a continuous function for $0 \leq x \leq 1$. Evaluate $\lim _{n \rightarrow \infty} n \int_{0}^{1} f(x) x^{n} d x$. (Justify your assertions.)
8. For $x>0$ define the function

$$
H(x)=\int_{1}^{x} \frac{1}{t} d t .
$$

Since the integrand, $1 / t$ is a continuous function on the interval $[1, x]$ (if $x \geq 1$) or $[x .1]$ (if $x \leq 1$), this is Riemann integrable.
Use the definition of the Riemann integral directly to show that for any $y>0$,

$$
\begin{equation*}
H(x)+H(y)=H(x y), \tag{1}
\end{equation*}
$$

thus establishing that $H(x)$ has the basic property of the logarithm.
SugGestion: First prove (1) assuming $x \geq 1$ (and any $y>0$) by rewriting (1) in the form $H(x)=H(x y)-H(y)$, that is,

$$
\int_{1}^{x} \frac{1}{t} d t=\int_{y}^{x y} \frac{1}{s} d s
$$

and use a geometric argument that relates a Riemann sum for the integral on the left to a corresponding Riemann sum on the right.. [First try the special case $x=2, y=2$.]
If $0<x<1$, then $1 / x>1$, so the result (1) follows from the case $x \geq 1$ by the clever chain:

$$
\begin{aligned}
H(x)+H(y) & =H(x)+H\left(\frac{1}{x} x y\right)=H(x)+\left[H\left(\frac{1}{x}\right)+H(x y)\right] \\
& =H\left(\frac{1}{x}\right)+H(x)+H(x y)=H\left(\frac{1}{x} x\right)+H(x y)=H(1)+H(x y)=H(x y) .
\end{aligned}
$$

9. Let $p(x)$ be a real polynomial of degree n. The following uses the inner product $\langle f, g\rangle:=$ $\int_{0}^{1} f(x) g(x) d x$.
a) If p is orthogonal to the constants, show that p has at least one real zero in the interval $\{0<x<1\}$.
b) If p is orthogonal to all polynomials of degree at most one, show that p has at least two distinct real zeros in the interval $\{0<x<1\}$.
c) If p is orthogonal to all polynomials of degree at most $n-1$, show that p has exactly n distinct real zeros in the interval $\{0<x<1\}$.

Bonus Problems

These are more challenging. If you do any of these, please give your solutions directly to me by Tuesday, Dec. 2.

Bonus Problem 1 Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function.
a) Show that $\lim _{\lambda \rightarrow \infty} \int_{0}^{1} f(x) \sin (\lambda x) d x=0$.
b) (generalization) If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with period P, show that

$$
\lim _{\lambda \rightarrow \infty} \int_{0}^{1} f(x) \varphi(\lambda x) d x=\bar{\varphi} \int_{0}^{1} f(x) d x
$$

where $\bar{\varphi}:=\frac{1}{P} \int_{0}^{P} \varphi(t) d t$ is the average of φ over one period.
Bonus Problem 2 Let \mathcal{C} be the ring of continuous functions on the interval $0 \leq x \leq 1$.
a) If $0 \leq c \leq 1$, show that the subset $\{f \in \mathcal{C} \mid f(c)=0\}$ is a maximal ideal.
b) Show that every maximal ideal in \mathcal{C} has this form. [Caution: This is false for the ring of continuous functions on the open interval $0<x<1$.]

