
Math 508, Fall 2008 Jerry Kazdan

Homework Set 9
DUE: Tues. Nov. 25, 2008. Late papers accepted until 1:00 Wednesday.

1. Find a continous function f and a constant C so that
Z x

0
f (t)dt = xcosx+8ex +C .

2. Let f : [0, 1] → R be a continuous function.
a) If

R 1
0 f (x)dx = 0, prove that f (x) is positive somewhere and negative somewhere in this

interval (unless it is identically zero).
b) If f : [0, 1] → R is a continuous function with the property that

R 1
0 f (x)g(x)dx = 0 for all

continuous functions g prove that f (x) = 0 for all x ∈ [0, 1] .
c) If f : [0, 1] → R is a continuous function with the property that

R 1
0 f (x)g(x)dx = 0 for all

C1 functions g that satisfy g(0) = g(1) = 0, must it be true that f (x) = 0 for all x ∈ [0, 1]?
Proof or counterexample.

3. [HÖLDER’S INEQUALITY] Let p, q > 1 with 1
p

+
1
q

= 1.

a) Show that st ≤
sp

p
+

tq

q
for all s, t > 0.

[SUGGESTION: There are many ways to prove this. One is to show that for any a > 0 and
s ≥ 0 the maximum of h(s) := as− sp/p occurs at s = a1/(p−1) .]

b) Use this to show that for any complex numbers ak , bk

n

∑
k=1

|akbk| ≤
[ n

∑
k=1

|ak|
p
]1/p[ n

∑
k=1

|bk|
q
]1/q

.

[SUGGESTION: First do the special case
[

∑n
k=1|ak|

p
]1/p

= 1 and
[

∑n
k=1|bk|

q
]1/q

= 1.
Then reduce the general case to this special case.]
If p = q = 1/2 this is the Schwarz inequality.

c) Similarly, show that for any continuous functions f , g

Z b

a
| f (x)g(x)|dx ≤

[

Z b

a
| f (x)|p dx

]1/p [

Z b

a
|g(x)|q dx

]1/q

.

4. Let p, q > 1 with 1
p

+
1
q

= 1. and let X := (x1, . . . ,xn) ∈ R
n and f ∈ C([a,b]) . Use Hölder’s

inequality (above) to prove the triangle inequality for the norms

‖X‖p :=
[ n

∑
k=1

|xk|
p
]1/p

and ‖ f‖p :=
[

Z b

a
| f (x)|p dx

]1/p

.
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5. Continuing the notation of the previous problem, define the norms

‖X‖∞;= max
k

{|xk|} and ‖ f‖∞ := max
x∈[a,b]

| f (x)|.

a) Show that limp→∞‖X‖p = ‖X‖∞ .
b) Show that limp→∞‖ f‖p = ‖ f‖∞

6. Compute lim
λ→∞

Z 1

0
|sin(λx)|dx .

7. Let f (x) be a continuous function for 0 ≤ x ≤ 1. Evaluate lim
n→∞

n
Z 1

0
f (x)xn dx. (Justify your

assertions.)

8. For x > 0 define the function
H(x) =

Z x

1

1
t

dt.

Since the integrand, 1/t is a continuous function on the interval [1,x] (if x ≥ 1) or [x.1] (if
x ≤ 1), this is Riemann integrable.
Use the definition of the Riemann integral directly to show that for any y > 0,

H(x)+H(y) = H(xy), (1)

thus establishing that H(x) has the basic property of the logarithm.
SUGGESTION: First prove (1) assuming x ≥ 1 (and any y > 0) by rewriting (1) in the form
H(x) = H(xy)−H(y) , that is,

Z x

1

1
t

dt =

Z xy

y

1
s

ds

and use a geometric argument that relates a Riemann sum for the integral on the left to a
corresponding Riemann sum on the right.. [First try the special case x = 2, y = 2.]
If 0 < x < 1, then 1/x > 1, so the result (1) follows from the case x ≥ 1 by the clever chain:

H(x)+H(y) = H(x)+H(
1
x

xy) = H(x)+ [H(
1
x
)+H(xy)]

= H(
1
x
)+H(x)+H(xy) = H(

1
x

x)+H(xy) = H(1)+H(xy) = H(xy).

9. Let p(x) be a real polynomial of degree n . The following uses the inner product 〈 f , g〉 :=
R 1

0 f (x)g(x)dx .
a) If p is orthogonal to the constants, show that p has at least one real zero in the interval

{0 < x < 1} .
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b) If p is orthogonal to all polynomials of degree at most one, show that p has at least two
distinct real zeros in the interval {0 < x < 1} .

c) If p is orthogonal to all polynomials of degree at most n− 1, show that p has exactly n
distinct real zeros in the interval {0 < x < 1} .

BONUS PROBLEMS

These are more challenging. If you do any of these, please give your solutions directly to me by
Tuesday, Dec. 2.

Bonus Problem 1 Let f : [0,1] → R be a continuous function.

a) Show that lim
λ→∞

Z 1

0
f (x)sin(λx)dx = 0.

b) (generalization) If ϕ : R → R is continuous with period P , show that

lim
λ→∞

Z 1

0
f (x)ϕ(λx)dx = ϕ

Z 1

0
f (x)dx,

where ϕ := 1
P

R P
0 ϕ(t)dt is the average of ϕ over one period.

Bonus Problem 2 Let C be the ring of continuous functions on the interval 0 ≤ x ≤ 1.
a) If 0 ≤ c ≤ 1, show that the subset { f ∈ C | f (c) = 0} is a maximal ideal.

b) Show that every maximal ideal in C has this form. [Caution: This is false for the ring of
continuous functions on the open interval 0 < x < 1.]
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