Homework Set 9

DUE: Tues. Nov. 25, 2008. Late papers accepted until 1:00 Wednesday.

1. Find a continous function f and a constant C so that $\int_0^x f(t) dt = x \cos x + 8e^x + C$.

- 2. Let $f:[0,1] \to \mathbb{R}$ be a continuous function.
 - a) If $\int_0^1 f(x) dx = 0$, prove that f(x) is positive somewhere and negative somewhere in this interval (unless it is identically zero).
 - b) If $f:[0,1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) dx = 0$ for all continuous functions g prove that f(x) = 0 for all $x \in [0, 1]$.
 - c) If $f:[0,1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) dx = 0$ for all C^1 functions g that satisfy g(0) = g(1) = 0, must it be true that f(x) = 0 for all $x \in [0,1]$? Proof or counterexample.
- 3. [HÖLDER'S INEQUALITY] Let p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.
 - a) Show that $st \le \frac{s^p}{p} + \frac{t^q}{q}$ for all s, t > 0. [SUGGESTION: There are many ways to prove this. One is to show that for any a > 0 and $s \ge 0$ the maximum of $h(s) := as - \frac{s^p}{p}$ occurs at $s = \frac{a^{1/(p-1)}}{p}$.]
 - b) Use this to show that for any complex numbers a_k , b_k

$$\sum_{k=1}^{n} |a_k b_k| \le \left[\sum_{k=1}^{n} |a_k|^p\right]^{1/p} \left[\sum_{k=1}^{n} |b_k|^q\right]^{1/q}.$$

[SUGGESTION: First do the special case $\left[\sum_{k=1}^{n} |a_k|^p\right]^{1/p} = 1$ and $\left[\sum_{k=1}^{n} |b_k|^q\right]^{1/q} = 1$. Then reduce the general case to this special case.] If p = q = 1/2 this is the Schwarz inequality.

c) Similarly, show that for any continuous functions f, g

$$\int_{a}^{b} |f(x)g(x)| \, dx \le \left[\int_{a}^{b} |f(x)|^{p} \, dx\right]^{1/p} \left[\int_{a}^{b} |g(x)|^{q} \, dx\right]^{1/q}$$

4. Let p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. and let $X := (x_1, \dots, x_n) \in \mathbb{R}^n$ and $f \in \mathbb{C}([a, b])$. Use Hölder's inequality (above) to prove the triangle inequality for the norms

$$||X||_p := \left[\sum_{k=1}^n |x_k|^p\right]^{1/p}$$
 and $||f||_p := \left[\int_a^b |f(x)|^p dx\right]^{1/p}$.

5. Continuing the notation of the previous problem, define the norms

$$||X||_{\infty}$$
; = $\max_{k} \{|x_k|\}$ and $||f||_{\infty}$:= $\max_{x \in [a,b]} |f(x)|$.

- a) Show that $\lim_{p\to\infty} ||X||_p = ||X||_{\infty}$.
- b) Show that $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$
- 6. Compute $\lim_{\lambda \to \infty} \int_0^1 |\sin(\lambda x)| \, dx$.
- 7. Let f(x) be a continuous function for $0 \le x \le 1$. Evaluate $\lim_{n \to \infty} n \int_0^1 f(x) x^n dx$. (Justify your assertions.)
- 8. For x > 0 define the function

$$H(x) = \int_1^x \frac{1}{t} dt.$$

Since the integrand, 1/t is a continuous function on the interval [1,x] (if $x \ge 1$) or [x.1] (if $x \le 1$), this is Riemann integrable.

Use the definition of the Riemann integral directly to show that for any y > 0,

$$H(x) + H(y) = H(xy), \tag{1}$$

thus establishing that H(x) has the basic property of the logarithm. SUGGESTION: First prove (1) assuming $x \ge 1$ (and any y > 0) by rewriting (1) in the form H(x) = H(xy) - H(y), that is,

$$\int_1^x \frac{1}{t} dt = \int_y^{xy} \frac{1}{s} ds$$

and use a geometric argument that relates a Riemann sum for the integral on the left to a corresponding Riemann sum on the right. [First try the special case x = 2, y = 2.]

If 0 < x < 1, then 1/x > 1, so the result (1) follows from the case $x \ge 1$ by the clever chain:

$$H(x) + H(y) = H(x) + H(\frac{1}{x}xy) = H(x) + [H(\frac{1}{x}) + H(xy)]$$

= $H(\frac{1}{x}) + H(x) + H(xy) = H(\frac{1}{x}x) + H(xy) = H(1) + H(xy) = H(xy).$

- 9. Let p(x) be a real polynomial of degree *n*. The following uses the inner product $\langle f, g \rangle := \int_0^1 f(x)g(x) dx$.
 - a) If p is orthogonal to the constants, show that p has at least one real zero in the interval $\{0 < x < 1\}$.

- b) If p is orthogonal to all polynomials of degree at most one, show that p has at least two distinct real zeros in the interval $\{0 < x < 1\}$.
- c) If p is orthogonal to all polynomials of degree at most n-1, show that p has exactly n distinct real zeros in the interval $\{0 < x < 1\}$.

BONUS PROBLEMS

These are more challenging. If you do any of these, please give your solutions directly to me by Tuesday, Dec. 2.

Bonus Problem 1 Let $f: [0,1] \to \mathbb{R}$ be a continuous function.

- a) Show that $\lim_{\lambda \to \infty} \int_0^1 f(x) \sin(\lambda x) dx = 0.$
- b) (generalization) If $\varphi \colon \mathbb{R} \to \mathbb{R}$ is continuous with period *P*, show that

$$\lim_{\lambda \to \infty} \int_0^1 f(x) \varphi(\lambda x) \, dx = \overline{\varphi} \int_0^1 f(x) \, dx,$$

where $\overline{\phi} := \frac{1}{P} \int_0^P \phi(t) dt$ is the average of ϕ over one period.

Bonus Problem 2 Let C be the ring of continuous functions on the interval $0 \le x \le 1$. a) If $0 \le c \le 1$, show that the subset $\{f \in C \mid f(c) = 0\}$ is a maximal ideal.

b) Show that every maximal ideal in C has this form. [Caution: This is false for the ring of continuous functions on the open interval 0 < x < 1.]