Basic Definitions

Let $S \subset \mathbb{R}^n$. and $p \in \mathbb{R}^n$.

- *S* is *bounded* if it is contained in some ball in \mathbb{R}^n .
- *S* is a *neighborhood* of *p* if *S* contains some open ball around *P*.
- A point p is a *limit point* of S if every neighborhood of p contains a point q ∈ S, where q ≠ p.
- If $p \in S$ is not a limit point of *S*, then it is called an *isolated point* of *S*.
- *S* is *closed* if every limit point of *S* is a point of *S*.
- A point $p \in S$ is an *interior point of S* if *S* contains a neighborhood of *p*.
- *S* is *open* if every point of *S* is an interior point of *S*.

- Let S' denote all of the limit points of S. Then the *closure* \overline{S} of S is the set $S \cup S'$. It is the smallest closed set containing S and is thus the intersection of all the closed sets containing S.
- A subset $T \subset S$ is *dense in* S if every point of S is either in T or a limit point of T (or both).

REMARK: These definitions are unchanged for any *metric space* instead of just \mathbb{R}^n .