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One often effective way to show that an equation g(x) = b has a solution is to reduce the
problem to find a fixed point x of a contracting map T , so T x = x . For instance, assume
V is a linear space and g : V →V . Define a new map T : V →V by T (x) := x−g(x)+b .
Then clearly x is a fixed point of T if and only if it solves g(x) = b .
Our setting is a metric space M with metric d(x, y) and a map T : M →M . We say that
T is a contracting map if there is some c with 0 < c < 1 such that

d(T x, Ty)≤ cd(x,y) for all x,y ∈M (1)

so T contracts the distance between points. The following theorem was found by Banach
who abstracted the essence of Picard’s existence theorem for ordinary differential equa-
tions. We will reverse the historical order and first prove Banach’s version.

Theorem 1 [PRINCIPLE OF CONTRACTING MAPS] Let M be a complete metric space
and T : M →M a contracting map. Then T has a unique fixed point p ∈M .

PROOF The uniqueness is short. Say p and q are fixed points. Then by the contracting
condition

d(p,q) = d(T p, T q)≤ cd(p, q).

Since c < 1, the only possibility is that d(p,q) = 0 so p = q .
To prove the existence of a fixed point, pick any x0 ∈M and inductively define the succes-
sive approximations xk by xk = T xk−1 for k = 1,2, . . . . Then using (1)

d(xk+1, xk) = d(T xk, T xk−1)≤ cd(xk, xk−1)

so by induction
d(xk+1, xk)≤ ckd(x1, x0). (2)

We use this to show that the xk form a Cauchy sequence. Pick any n > k . Then by the
triangle inequality and (2)

d(xn, xk)≤ d(xn, xn−1)+d(xn−1, xn−2)+ · · ·+d(xk+1, xk)

≤
(
cn−1 + cn−2 + · · ·ck)d(x1, x0)

≤ ck

1− c
d(x1 x0).

Because c < 1 the xk form a Cauchy sequence. The completeness of M implies there is a
point p ∈M with xk→ p . By the continuity of T (which follows from (1)),

T p = T ( lim
k→∞

xk) = lim
k→∞

T xk = lim
k→∞

xk+1 = p.

This proves that p is a fixed point of T .

In this proof, the xk are better and better approximations to the fixed point p . That is why
this theorem is sometimes called the method of successive approximations.
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The following small generalization is sometimes useful. Write T 2x = T (T (x)) , T 3x =
T (T 2(x)) , etc. and observe that T T k = T k+1 = T kT (composition of maps is associative).

Corollary 2 If some power of T , say T k , is a contraction, then T has a unique fixed point
p ∈M .

PROOF By the theorem, there is a unique p ∈ M such that T k p = p . We claim that
T p = p . Because d(T kx, T ky)≤ cd(x,y) for some c < 1, this follows from

d(T p, p) = d(T (T k p), T k p) = d(T k(T p), T k p)≤ cd(T p, p).

The fixed point of T is unique because any fixed point of T is also a fixed point of T k ,

Application
Let A(t) be an n× n matrix and f (t) ∈ Rn a vector. Assume that the elements of A and
the components of F are continuous functions of t for |t| ≤ a . We want to show that the
(linear) system of ordinary differential equations

du
dt

= A(t)u+ f (t) with initial condition u(0) = c (3)

has a unique solution. Here c ∈ Rn is a given and the vector u(t) is to be found.

Theorem 3 There is a α with 0 < α ≤ a such that the initial value problem (3) has a
unique solution u(t) in C1([−α, α]) .

PROOF Using the fundamental theorem of calculus we integrate both sides of the differ-
ential equation in (3) and observe it is enough to find a function u(t) ∈ C([−α,α]) that
satisfies

u(t) = c+
∫ t

0
A(s)u(s)ds+F(t), where F(t) :=

∫ t

0
f (s)ds. (4)

Note that although we only seek a continuous u(t) that satisfies (4), by the fundamental
theorem of calculus it follows from (4) that u is indeed in C1([−α,α]) and satisfies (3).

For any ϕ ∈C([−a,a]) define the map T : C([−a,a])→C([−a,a]) by

(T ϕ)(t) := c+
∫ t

0
A(s)ϕ(s)ds+F(t). (5)

Note that the right hand side is a continuous function of t (it is even in C1 ), the new
function T ϕ is also continuous.
Key observation: if u is a fixed point of T , so Tu = u , then it will be the desired solution of
(4). Thus we seek a complete metric space M so that T : M →M and is contracting. For
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M we’ll use C([−α,α]) with the uniform norm and pick α≤ a shortly. The completeness
of M is simply that the uniform limit of continuous functions is continuous.
Since α≤ a , we know immediately that T maps M to itself.
To verify the contracting condition, note that for any ϕ(s) and ψ(s) in C(|s| ≤ a)

(T ϕ)(t)− (T ψ)(t) =
∫ t

0
A(s)[ϕ(s)−ψ(s)]ds. (6)

We use that the matrix A(s) is continuous for |s| ≤ a . Thus it is bounded: |A(s)| ≤ m for
all |s| ≤ a . Consequently

|A(s)[ϕ(s)−ψ(s)]| ≤m|ϕ(s)−ψ(s)|
≤m‖ϕ−ψ‖∞,

where on the right side we used the uniform norm on C([−α,α]) . Thus,

|(T ϕ)(t)− (T ψ)(t)| ≤ mα‖ϕ−ψ‖∞ (7)

for all |t| ≤ α . Since the right side does not depend on t , we can take the max of the left
side over all |t| ≤ α and conclude that

‖T ϕ−T ψ‖∞ ≤ mα‖ϕ−ψ‖∞.

To satisfy the contracting condition it is evident that we need only pick α so that mα < 1,
that is, α < 1/m . This completes the proof.

To get the contracting condition, we needed to choose α < 1/m . However by using Corol-
lary 2, this restriction can be avoided and we can let α= a . To do this, we need only replace
the crude inequality (7) by using that we are really integrating only over [0, t] . (Here we’ll
assume t ≥ 0; the case t ≤ 0 is identical). This gives

|(T ϕ)(t)− (T ψ)(t)| ≤ mt‖ϕ−ψ‖∞. (8)

Thus

|(T 2
ϕ)(t)−(T 2

ψ)(t)|=
∫ t

0
A(s)[T ϕ(s)−T ψ(s)]ds≤m2‖ϕ−ψ‖∞

∫ t

0
sds=m2‖ϕ−ψ‖∞

t2

2
.

Repeating this we find

|(T k
ϕ)(t)− (T k

ψ)(t)| ≤ mk‖ϕ−ψ‖∞

∫ t

0

sk−1

(k−1)!
ds = mk‖ϕ−ψ‖∞

tk

k!
.

Picking k so large that mkak/k! < 1 shows that T k is contracting on C([0,a]) so by Corol-
lary 2 we are done.
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