Contracting Maps and an Application
Math 508, Fall 2010 Jerry L. Kazdan

One often effective way to show that an equation g(x) = b has a solution is to reduce the
problem to find a fixed point x of a contracting map T, so Tx = x. For instance, assume
V is a linear space and g:V — V. Defineanew map 7 :V — V by T(x) :=x—g(x) +b.
Then clearly x is a fixed point of 7 if and only if it solves g(x) = b.

Our setting is a metric space M with metric d(x,y) and amap T : M — M . We say that
T is a contracting map if there is some ¢ with 0 < ¢ < 1 such that
d(Tx,Ty) <cd(x,y) forall x,ye M (1)

so T contracts the distance between points. The following theorem was found by Banach
who abstracted the essence of Picard’s existence theorem for ordinary differential equa-
tions. We will reverse the historical order and first prove Banach’s version.

Theorem 1 [PRINCIPLE OF CONTRACTING MAPS] Let M be a complete metric space
and T : M — M a contracting map. Then T has a unique fixed point p € ‘M .

PROOF The uniqueness is short. Say p and g are fixed points. Then by the contracting
condition

d(p,q) =d(Tp,Tq) < cd(p, q).
Since ¢ < 1, the only possibility is that d(p,q) =0 so p =gq.
To prove the existence of a fixed point, pick any xy € M and inductively define the succes-
sive approximations xi by x; = Tx;_1 for k=1,2,.... Then using (1)
d(Xpq1, xx) = d(Txg, Txg—1) < cd(xg, xk—1)
so by induction
d(x41, x) < c*d(x1, x0). )
We use this to show that the x; form a Cauchy sequence. Pick any n > k. Then by the
triangle inequality and (2)
d(xn, xx) < d(%Xn, Xn—1) +d(X5-1, Xp—2) + - +d (Xpp1, %)
< ("M M (v, x0)
ok
S I—_Cd(x1 )C()) .
Because ¢ < 1 the x; form a Cauchy sequence. The completeness of M implies there is a
point p € M with x; — p. By the continuity of 7' (which follows from (1)),
Tp=T(limx;) = lim Tx; = lim x3.| = p.
This proves that p is a fixed point of 7.

In this proof, the x; are better and better approximations to the fixed point p. That is why
this theorem is sometimes called the method of successive approximations.
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The following small generalization is sometimes useful. Write T°x = T(T(x)), T x =
T(T?(x)), etc. and observe that TTX = T**! = TXT (composition of maps is associative).

Corollary 2 If some power of T, say T, is a contraction, then T has a unique fixed point

peEM.

PROOF By the theorem, there is a unique p € M such that T¥p = p. We claim that
Tp = p. Because d(T*x, T¥y) < cd(x,y) for some ¢ < 1, this follows from

d(Tp, p) =d(T(T*p), T*p) = d(T*(Tp), T*p) < cd(Tp, p).
The fixed point of T is unique because any fixed point of 7 is also a fixed point of T*,

Application

Let A(r) be an n x n matrix and f(z) € R" a vector. Assume that the elements of A and
the components of F are continuous functions of ¢ for |f| < a. We want to show that the
(linear) system of ordinary differential equations

d
d_? =A(t)u+ f(t) with initial condition u(0)=c 3)
has a unique solution. Here ¢ € R” is a given and the vector u(¢) is to be found.

Theorem 3 There is a o with 0 < o < a such that the initial value problem (3) has a
unique solution u(t) in C'([—a, ol]).

PROOF Using the fundamental theorem of calculus we integrate both sides of the differ-
ential equation in (3) and observe it is enough to find a function u(z) € C([—o,a]) that
satisfies

t t
u(t)=c +/ A(s)u(s)ds+F(t), where F(t):= / f(s)ds. 4)
0 0
Note that although we only seek a continuous u(t) that satisfies (4), by the fundamental
theorem of calculus it follows from (4) that u is indeed in C' ([~ &]) and satisfies (3).

For any ¢ € C([—a,a]) define the map T : C([—a,a]) — C([—a,a]) by

(TQ)(t) :=c+ /O " A(s)9(s) ds + F(t). )

Note that the right hand side is a continuous function of ¢ (it is even in C'), the new
function 7@ is also continuous.

Key observation: if u is a fixed point of 7', so Tu = u, then it will be the desired solution of
(4). Thus we seek a complete metric space M so that T : M — M and is contracting. For
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M we’ll use C([—a, o) with the uniform norm and pick o < a shortly. The completeness
of M is simply that the uniform limit of continuous functions is continuous.

Since o < a, we know immediately that 7 maps M to itself.
To verify the contracting condition, note that for any @(s) and y(s) in C(|s| < a)

60~ (Tw)(0) = [ 45)l0(s) ~is)as. ©

We use that the matrix A(s) is continuous for |s| < a. Thus it is bounded: |A(s)| < m for
all |s| < a. Consequently

[A(s)[@(s) —w(s)]| <mlo(s) —w(s)]

<ml|@ = Y|,
where on the right side we used the uniform norm on C([—a,a]). Thus,
(To)(1) = (Tw) (1) < matf|e -l )

for all || < o. Since the right side does not depend on ¢, we can take the max of the left
side over all || < o and conclude that

1TQ— Tyl < ma|[@— ||

To satisfy the contracting condition it is evident that we need only pick o so that ma < 1,
that is, o0 < 1/m. This completes the proof.

To get the contracting condition, we needed to choose o < 1/m. However by using Corol-
lary 2, this restriction can be avoided and we can let o = a. To do this, we need only replace
the crude inequality (7) by using that we are really integrating only over [0,¢]. (Here we’ll
assume ¢t > 0; the case ¢ < 0 is identical). This gives

(Te)(1) = (Tw)(1)| < m1]|o — . ®)
Thus

t t 2
(T20)(0) = (T2)(0) = | AGIT o) ~Tw(s)]ds <nllo—vi.. [ sds=n?|o—y]..
Repeating this we find
k—1 k

(o))~ (o) <o —vl- || s = o vy

Picking k so large that m*a* /k! < 1 shows that T* is contracting on C([0,a]) so by Corol-
lary 2 we are done.
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