Math508, Fall 2010

Jerry L. Kazdan

Problem Set 0: Rust Remover

DUE: These problems will not be collected.

You should already have the techniques to do these problems, although they may take some thinking.

- 1. Show that for any positive integer *n*, the number $2^{n+2} + 3^{2n+1}$ is divisible by 7.
- 2. Say you have k linear algebraic equations in n variables; in matrix form we write AX = Y. Give a proof or counterexample for each of the following.
 - a) If n = k there is always *at most one* solution.
 - b) If n > k you can *always* solve AX = Y.
 - c) If n > k the nullspace of A has dimension greater than zero.
 - d) If n < k then for *some Y* there is *no* solution of AX = Y.
 - e) If n < k the *only* solution of AX = 0 is X = 0.
- 3. Let *A* and *B* be $n \times n$ matrices with AB = 0. Give a proof or counterexample for each of the following.
 - a) BA = 0
 - b) Either A = 0 or B = 0 (or both).
 - c) If detA = -3, then B = 0.
 - d) If *B* is invertible then A = 0.
 - e) There is a vector $V \neq 0$ such that BAV = 0.
- 4. Let A be a matrix, not necessarily square. Say V and W are particular solutions of the equations $AV = Y_1$ and $AW = Y_2$, respectively, while $Z \neq 0$ is a solution of the homogeneous equation AZ = 0. Answer the following in terms of V, W, and Z.
 - a) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1$.
 - b) Find some solution of $A\mathbf{X} = -5\mathbf{Y}_2$.
 - c) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.
 - d) Find another solution (other than **Z** and 0) of the homogeneous equation $A\mathbf{X} = 0$.
 - e) Find *two* solutions of $A\mathbf{X} = \mathbf{Y}_1$.

- f) Find another solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.
- g) If A is a square matrix, then det A = ?
- h) If A is a square matrix, for any given vector W can one always find at least one solution of AX = W? Why?
- 5. a) If $r \neq 0$ is a rational number and x is irrational, show that both r + x and rx are *irrational*.
 - b) Prove that there is no rational number whose square is 12.
 - c) Graph the points (x, y) in the plane \mathbb{R}^2 that satisfy |y x| > 2.
- 6. a) Write the complex number $z = \frac{1}{a+ib}$ in the form c+id, where a, b, c are d are real numbers. Of course assume $a+ib \neq 0$.
 - b) If $w \in \mathbb{C}$ satisfies |w| = 1, show that $1/w = \overline{w}$. [\mathbb{C} is the set of complex numbers.]
- 7. Let $z, w, v \in \mathbb{C}$ be complex numbers.
 - a) Show that $|z w| \ge |z v| |v w|$.
 - b) Graph the points z = x + iy in the complex plane that satisfy 1 < |z i| < 2.
 - c) Let $z, w \in \mathbb{C}$ be complex numbers with |z| < 1 and |w| = 1. Show that

$$\left|\frac{w-z}{1-\bar{z}w}\right| = 1.$$

- 8. a) Find a 2×2 matrix that rotates the plane by +45 degrees (+45 degrees means 45 degrees *counterclockwise*).
 - b) Find a 2×2 matrix that rotates the plane by +45 degrees followed by a reflection across the horizontal axis.
 - c) Find a 2×2 matrix that reflects across the horizontal axis followed by a rotation the plane by +45 degrees.
 - d) Find a matrix that rotates the plane through +60 degrees, keeping the origin fixed.
 - e) Find the inverse of each of these maps.
- 9. Let the continuous function $f(\theta)$, $0 \le \theta \le 2\pi$ represent the temperature along the equator at a certain moment, say measured from the longitude at Greenwich. Show there are antipodal points with the *same* temperature.

- 10. A certain function f(x) has the property that $\int_0^x f(t) dt = e^x \cos x + C$. Find both f and the constant C.
- 11. If $b \ge 0$, show that for every real *c* the equation $x^5 + bx + c = 0$ has exactly one real root.
- 12. Let $p(x) := x^3 + cx + d$, where *c*, and *d* are real. Under what conditions on *c* and *d* does this has three distinct real roots? [HINT: Sketch a graph of this cubic. Observe that if there are three distinct real roots then there is a local maximum and the polynomial is positive there. What about a local min?].
- 13. Prove that the function $\sin x$ is not a polynomial. That is, there is no polynomial

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

with real coefficients so that $\sin x = p(x)$ for all real numbers x. In your proof you can use any of the standard properties of the function $\sin x$.

[Last revised: August 26, 2010]