Problem Set 1

DuE: Thurs. Sept. 16, 2010. Late papers will be accepted until 1:00 PM Friday.

1. Let $x_{0}=1$ and define $x_{k}:=\sqrt{3 x_{k-1}+4}, k=1,2, \ldots$. Show that $x_{k}<4$ and that the x_{k} are increasing.
2. Show that $1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{k!}<3$.
3. Let $A:=\left(a_{i j}\right)$ be a $n \times n$ matrix of complex numbers with $\left|a_{i j}\right| \leq M$ and let $a_{i j}^{(k)}$ be the elements of $A^{k}, k=1,2, \ldots$. Find an estimate for $\left|a_{i j}^{(k)}\right|$ in terms of k, n, and M.
4. a) Let $z, w, v \in \mathbb{C}$ and define $d(z, w)):=\frac{|z-w|}{1+|z-w|}$. Show that

$$
d(z, v) \leq d(z, w)+d(w, v) \quad[\text { triangle inequality }]
$$

b) Let S be an arbitrary set with $p, q, r \in S$. Say there is a function $g: S \times S \rightarrow \mathbb{R}$ that satisfies the triangle inequality

$$
g(p, r) \leq g(p, q)+g(q, r)
$$

Define $d(p, q)):=\frac{g(p, q)}{1+g(p, q)}$. Show that this function $d(p, q)$ also satisfies the triangle inequality.
5. Suppose $a \in \mathbb{R}^{k}, b \in \mathbb{R}^{k}$, and $x \in \mathbb{R}^{k}$. Find all $c \in \mathbb{R}^{k}$ and $r>0$ (depending on a and b) such that $|x-a|=2|x-b|$ is satisfied if and only if $|x-c|=r$.
As an alternate, you may prefer the following generalization. For real $\lambda>0, \lambda \neq 1$, consider the points $x \in \mathbb{R}^{k}$ that satisfy

$$
|x-a|=\lambda|x-b|
$$

Show that these points lie on a sphere. Part of this is to find the center and radius of this sphere in terms of a, b and λ. What if $\lambda=1$?
[Last revised: September 18, 2010]

