Math508, Fall 2010

Jerry L. Kazdan

Problem Set 1

DUE: Thurs. Sept. 16, 2010. Late papers will be accepted until 1:00 PM Friday.

- 1. Let $x_0 = 1$ and define $x_k := \sqrt{3x_{k-1}+4}$, k = 1, 2, ... Show that $x_k < 4$ and that the x_k are increasing.
- 2. Show that $1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{k!} < 3$.
- 3. Let $A := (a_{ij})$ be a $n \times n$ matrix of complex numbers with $|a_{ij}| \le M$ and let $a_{ij}^{(k)}$ be the elements of A^k , $k = 1, 2, \ldots$ Find an estimate for $|a_{ij}^{(k)}|$ in terms of k, n, and M.
- 4. a) Let $z, w, v \in \mathbb{C}$ and define d(z, w) := $\frac{|z w|}{1 + |z w|}$. Show that

$$d(z,v) \le d(z,w) + d(w,v)$$
 [triangle inequality].

b) Let S be an arbitrary set with $p, q, r \in S$. Say there is a function $g: S \times S \to \mathbb{R}$ that satisfies the triangle inequality

$$g(p,r) \le g(p,q) + g(q,r).$$

Define d(p,q) := $\frac{g(p,q)}{1+g(p,q)}$. Show that this function d(p,q) also satisfies the triangle inequality.

5. Suppose $a \in \mathbb{R}^k$, $b \in \mathbb{R}^k$, and $x \in \mathbb{R}^k$. Find all $c \in \mathbb{R}^k$ and r > 0 (depending on *a* and b) such that |x-a| = 2|x-b| is satisfied if and only if |x-c| = r.

As an alternate, you may prefer the following generalization. For real $\lambda > 0$, $\lambda \neq 1$, consider the points $x \in \mathbb{R}^k$ that satisfy

$$|x-a| = \lambda |x-b|.$$

Show that these points lie on a sphere. Part of this is to find the center and radius of this sphere in terms of *a*, *b* and λ . What if $\lambda = 1$?

[Last revised: September 18, 2010]