Math508, Fall 2010

Jerry L. Kazdan

Problem Set 10

DUE: Tues. Nov. 30, 2010. Late papers will be accepted until 1:00 PM Wednesday.

Note: We say a function is *smooth* if its derivatives of ball orders exist and are continuous.

- 1. Find an integer N so that $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N} > 100.$
- 2. Let c(x) be a given smooth function and $u(x) \neq 0$ satisfy the differential equation $-u'' + c(x)u = \lambda u$ on the bounded interval $\Omega = \{a < x < b\}$ with u = 0 on the boundary of Ω . Here λ is a constant. Show that

$$\lambda = \frac{\int_{\Omega} (u'^2 + cu^2) \, dx}{\int_{\Omega} u^2 \, dx}$$

- 3. The *Gamma function* is defined by $\Gamma(x) := \int_0^\infty e^{-t} t^{x-1} dt$.
 - a) For which real x does this improper integral converge?
 - b) Show that $\Gamma(x+1) = x\Gamma(x)$ and deduce that $\Gamma(n+1) = n!$ for any integer $n \ge 0$.
- 4. Consider $f(x) := \sum_{k=1}^{\infty} \frac{\sin kx}{1+k^4}$.
 - a) For which real x is f continuous?
 - b) Is f differentiable? Why?
- 5. If the complex power series $\sum_{k=0}^{\infty} a_k z^k$ converges at z = c, and R < |c|, show that it converges absolutely and uniformly in the disk $\{z \in \mathbb{C} \mid |z| \le R\}$.
- 6. Let a_n be a bounded sequence of complex numbers and

$$f(z) = \sum_{n=1}^{\infty} \frac{a_n}{n^z},$$

where z = x + iy. If c > 1, show that this series converges absolutely and uniformly in the half-plane $\{z = x + iy \in \mathbb{C} \mid x \ge c\}$.

7. Show that the sequence of functions $f_n(x) := n^3 x^n (1-x)$ does not converge uniformly on [0, 1].

- 8. For each of the following give an example of a sequence of continuous functions. Justify your assertions. [A clear sketch may be adequate as long as it is convincing].
 - a) $f_n(x)$ that converge to zero at every $x, 0 \le x \le 1$, but *not* uniformly.
 - b) $g_n(x)$ that converge to zero at every $x, 0 \le x \le 1$, but $\int_0^1 g_n(x) dx \ge 1$.
 - c) $h_n(x)$ converge to zero uniformly for $0 \le x < \infty$, but $\int_0^\infty h_n(x) dx \ge 1$.

Bonus Problems (Due Nov 30)

B-1 If $\varphi \colon \mathbb{R} \to \mathbb{R}$ is continuous with period *P*, so $\varphi(x+P) = \varphi(x)$ for all real *x*. Show that

$$\lim_{\lambda \to \infty} \int_0^1 f(x) \varphi(\lambda x) \, dx = \overline{\varphi} \int_0^1 f(x) \, dx$$

where $\overline{\varphi} := \frac{1}{P} \int_0^P \varphi(t) dt$ is the average of φ over one period. [This generalized both HW8 #7 and HW9 #B-1.]

B-2 Let $\varphi_n(t)$ be a sequence of smooth real-valued functions with the properties

(a)
$$\varphi_n(t) \ge 0$$
, (b) $\varphi_n(t) = 0$ for $|t| \ge 1/n$, (c) $\int_{-\infty}^{\infty} \varphi_n(t) dt = 1$.

Note: because of (b), this integral is only over $-1/n \le t \le 1/n$.

Assume f(x) is uniformly continuous for all $x \in \mathbb{R}$ and define

$$f_n(x) := \int_{-\infty}^{\infty} f(x-t) \varphi_n(t) dt.$$

Show that $f_n(x)$ converges uniformly to f(x) for all $x \in \mathbb{R}$. [SUGGESTION: Use $f(x) = f(x) \left(\int_{-\infty}^{\infty} \varphi_n(t) dt \right) = \int_{-\infty}^{\infty} f(x) \varphi_n(t) dt$. Also, note *explicitly* where you use the uniform continuity of f].

REMARK: One can show that the approximations f_n are also smooth. Thus, this proves that you can approximate a continuous function *uniformly* on any compact set by a smooth function.

[Last revised: November 21, 2010]