Problem Set 10

DuE: Tues. Nov. 30, 2010. Late papers will be accepted until 1:00 PM Wednesday.

Note: We say a function is smooth if its derivatives of ball orders exist and are continuous.

1. Find an integer N so thst $\quad 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}>100$.
2. Let $c(x)$ be a given smooth function and $u(x) \not \equiv 0$ satisfy the differential equation $-u^{\prime \prime}+$ $c(x) u=\lambda u$ on the bounded interval $\Omega=\{a<x<b\}$ with $u=0$ on the boundary of Ω. Here λ is a constant. Show that

$$
\lambda=\frac{\int_{\Omega}\left(u^{\prime 2}+c u^{2}\right) d x}{\int_{\Omega} u^{2} d x}
$$

3. The Gamma function is defined by $\Gamma(x):=\int_{0}^{\infty} e^{-t} t^{x-1} d t$.
a) For which real x does this improper integral converge?
b) Show that $\Gamma(x+1)=x \Gamma(x)$ and deduce that $\Gamma(n+1)=n$! for any integer $n \geq 0$.
4. Consider $f(x):=\sum_{k=1}^{\infty} \frac{\sin k x}{1+k^{4}}$.
a) For which real x is f continuous?
b) Is f differentiable? Why?
5. If the complex power series $\sum_{k=0}^{\infty} a_{k} z^{k}$ converges at $z=c$, and $R<|c|$, show that it converges absolutely and uniformly in the disk $\{z \in \mathbb{C}||z| \leq R\}$.
6. Let a_{n} be a bounded sequence of complex numbers and

$$
f(z)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}
$$

where $z=x+i y$. If $c>1$, show that this series converges absolutely and uniformly in the half-plane $\{z=x+i y \in \mathbb{C} \mid x \geq c\}$.
7. Show that the sequence of functions $f_{n}(x):=n^{3} x^{n}(1-x)$ does not converge uniformly on $[0,1]$.
8. For each of the following give an example of a sequence of continuous functions. Justify your assertions. [A clear sketch may be adequate - as long as it is convincing].
a) $f_{n}(x)$ that converge to zero at every $x, 0 \leq x \leq 1$, but not uniformly.
b) $g_{n}(x)$ that converge to zero at every $x, 0 \leq x \leq 1$, but $\int_{0}^{1} g_{n}(x) d x \geq 1$.
c) $h_{n}(x)$ converge to zero uniformly for $0 \leq x<\infty$, but $\int_{0}^{\infty} h_{n}(x) d x \geq 1$.

Bonus Problems (Due Nov 30)

B-1 If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with period P, so $\varphi(x+P)=\varphi(x)$ for all real x. Show that

$$
\lim _{\lambda \rightarrow \infty} \int_{0}^{1} f(x) \varphi(\lambda x) d x=\bar{\varphi} \int_{0}^{1} f(x) d x
$$

where $\bar{\varphi}:=\frac{1}{P} \int_{0}^{P} \varphi(t) d t$ is the average of φ over one period. [This generalized both HW8 \#7 and HW9 \#B-1.]

B-2 Let $\varphi_{n}(t)$ be a sequence of smooth real-valued functions with the properties

$$
\text { (a) } \varphi_{n}(t) \geq 0, \quad(b) \varphi_{n}(t)=0 \text { for }|t| \geq 1 / n, \quad \text { (c) } \int_{-\infty}^{\infty} \varphi_{n}(t) d t=1
$$

Note: because of (b), this integral is only over $-1 / n \leq t \leq 1 / n$.
Assume $f(x)$ is uniformly continuous for all $x \in \mathbb{R}$ and define

$$
f_{n}(x):=\int_{-\infty}^{\infty} f(x-t) \varphi_{n}(t) d t
$$

Show that $f_{n}(x)$ converges uniformly to $f(x)$ for all $x \in \mathbb{R}$. [SUGGESTION: Use $f(x)=f(x)\left(\int_{-\infty}^{\infty} \varphi_{n}(t) d t\right)=\int_{-\infty}^{\infty} f(x) \varphi_{n}(t) d t$. Also, note explicitly where you use the uniform continuity of f].

REMARK: One can show that the approximations f_{n} are also smooth. Thus, this proves that you can approximate a continuous function uniformly on any compact set by a smooth function.
[Last revised: November 21, 2010]

