Problem Set 11

Due: Never

Note: We say a function is smooth if its derivatives of ball orders exist and are continuous.

1. Partition $[a, b] \in \mathbb{R}$ into sub-intervals $a<x_{1}<x_{2}<\cdots<x_{n}=b$. A function $h(x)$ that is constant on each sub-interval is called a step function. Show that if $f \mathbb{C}([a, b])$, then it can be approximated arbitrarily closely (in the uniform norm) by a step function.
2. Let $f \in C([-1,1])$ be an even function (so $f(-x)=f(x)$). Show it can be approximated arbitrarily closely (in the uniform norm) by an even polynomial.
3. Let $f \in C^{1}([0,2])$. Given any $\varepsilon>0$ show there is a polynomial $p(x)$ such that

$$
\max _{x \in[0,2]}|f(x)-p(x)|+\max _{x \in[0,2]}\left|f^{\prime}(x)-p^{\prime}(x)\right|<\varepsilon
$$

That is, $\|f-p\|_{C^{1}([0,2])}<\varepsilon$.
4. a) Give an example of a continuous function $f:(0,1] \rightarrow(0,1]$ that has no fixed points.
b) Let $A \in(1,3)$ and $f(x):=(x / 2)+(A / 2 x)$. Show that f satisfies the hypotheses of the Contracting Mapping Principle on the domain $[1, \infty)$. What is the fixed point?
5. Let $h(x, y)$ and $f(x)$ be continuous for $0 \leq x \leq 2,0 \leq y \leq 2$.
a) Show that if $0<c \leq 2$ is sufficiently small, then their is a continuous function $u(x)$ that satisfies

$$
\begin{equation*}
u(x)=f(x)+\int_{0}^{c} h(x, y) u(y) d y \tag{*}
\end{equation*}
$$

b) In the special case where $h(x, y) \equiv 1$ and $f(x) \equiv 1$, solve equation $\left(^{*}\right)$ explicitly. [This is easy. Let $\alpha=\int_{0}^{1} u(y) d y$ and then use (*) to solve for α].
From this, show that indeed for some value of c a solution may not exist.
6. Let $f(x)$ and $h(x, y)$ be as in the previous problem. Show that if $\lambda>0$ is sufficiently small, the equation

$$
\begin{equation*}
u(x)=f(x)+\lambda \int_{0}^{2} h(x, y) u(y) d y \tag{1}
\end{equation*}
$$

has a unique continuous solution $u(x)$.
7. Let f be an even continuous function on $[-1,1]$ with $\int_{-1}^{1} f(x) x^{n} d x=0$ for all even $n \geq 0$. Show that $f \equiv 0$.
[Last revised: December 8, 2010]

