Math508, Fall 2010

Problem Set 11

DUE: Never

Note: We say a function is *smooth* if its derivatives of ball orders exist and are continuous.

- 1. Partition $[a,b] \in \mathbb{R}$ into sub-intervals $a < x_1 < x_2 < \cdots < x_n = b$. A function h(x) that is constant on each sub-interval is called a *step function*. Show that if $f\mathbb{C}([a,b])$, then it can be approximated arbitrarily closely (in the uniform norm) by a step function.
- 2. Let $f \in C([-1, 1])$ be an even function (so f(-x) = f(x)). Show it can be approximated arbitrarily closely (in the uniform norm) by an even polynomial.
- 3. Let $f \in C^1([0,2])$. Given any $\varepsilon > 0$ show there is a polynomial p(x) such that

$$\max_{x \in [0,2]} |f(x) - p(x)| + \max_{x \in [0,2]} |f'(x) - p'(x)| < \varepsilon$$

That is, $||f - p||_{C^1([0,2])} < \varepsilon$.

- 4. a) Give an example of a continuous function $f: (0,1] \rightarrow (0,1]$ that has *no* fixed points.
 - b) Let $A \in (1,3)$ and f(x) := (x/2) + (A/2x). Show that f satisfies the hypotheses of the Contracting Mapping Principle on the domain $[1,\infty)$. What is the fixed point?
- 5. Let h(x,y) and f(x) be continuous for $0 \le x \le 2$, $0 \le y \le 2$.
 - a) Show that if $0 < c \le 2$ is sufficiently small, then their is a continuous function u(x) that satisfies

$$u(x) = f(x) + \int_0^c h(x, y)u(y) \, dy.$$
(*)

- b) In the special case where $h(x, y) \equiv 1$ and $f(x) \equiv 1$, solve equation (*) explicitly. [This is easy. Let $\alpha = \int_0^1 u(y) dy$ and then use (*) to solve for α]. From this, show that indeed for some value of *c* a solution may *not* exist.
- 6. Let f(x) and h(x,y) be as in the previous problem. Show that if $\lambda > 0$ is sufficiently small, the equation

$$u(x) = f(x) + \lambda \int_0^2 h(x, y) u(y) \, dy.$$
 (1)

has a unique continuous solution u(x).

7. Let f be an even continuous function on [-1,1] with $\int_{-1}^{1} f(x)x^n dx = 0$ for all even $n \ge 0$. Show that $f \equiv 0$.

[Last revised: December 8, 2010]