Problem Set 3

DUE: Thurs. Sept. 30, 2010. Late papers will be accepted until 1:00 PM Friday.

1. Find all (complex) roots $z=x+i y$ of $z^{2}=i$.
2. Let $x_{n}>0$ be a sequence of real numbers with the property that they converge to a real number $c>0$. Prove there is a real number $m>0$ such that $x_{n}>m$ for all $n=1,2, \ldots$.
3. Let $x_{k} \in \mathbb{R}, x_{k} \neq 0$ be a sequence of real numbers. If $x_{k} \rightarrow c \neq 0$, show that $1 / x_{k} \rightarrow 1 / c$.
4. Calculate $\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n$.
5. If $c>0$, show that $\frac{c^{n}}{n!} \rightarrow 0$ as $n \rightarrow \infty$.
6. Let a_{n} be an increasing sequence of real numbers that is bounded above, so there is an M such that $a_{n}<M$ for all $n=1,2,3, \ldots$. Show there is a real number A such that $a_{n} \rightarrow A$.
7. Let $p_{k}=\left(x_{k}, y_{k}\right) \in \mathbb{R}^{2}, k=1,2, \ldots$ be a sequence of points in the plane (with the usual Euclidean metric). Show that $\left\{p_{k}\right\}$ converges to $p=(x, y)$ if and only if $x_{k} \rightarrow x$ and $y_{k} \rightarrow y$.
8. [NEWTON] Let $A>0$ and $x_{1}>0$. Define $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{A}{x_{n}}\right)$. The following steps show that $x_{n} \rightarrow \sqrt{A}$.
a) Show that after the first term, the sequence $\left\{x_{n}\right\}$ is monotonically decreasing and that $x_{2}^{2} \geq A$ (hence $x_{n}^{2} \geq A$ for $n \geq 2$).
b) Show the x_{n} converge to some real number L and, using the definition of x_{n}, that $L^{2}=A$.
9. a) Give an example of a nested sequence of open intervals whose intersection is empty.
b) Give an example of a sequence of closed intervals $J_{k+1} \supset J_{k}, k=1,2, \ldots$, whose union is the open interval $(-2,2)$.
10. [From Homework Set 0] Let $z, w, v \in \mathbb{C}$ be complex numbers.
a) Show that $|z-w| \geq|z-v|-|v-w|$.
b) Graph the points $z=x+i y$ in the complex plane that satisfy $1<|z-i|<2$.
c) Let $z, w \in \mathbb{C}$ be complex numbers with $|z|<1$ and $|w|=1$. Show that

$$
\left|\frac{w-z}{1-\bar{z} w}\right|=1 .
$$

Bonus Problem (Due Oct. 1)

B-1 Given a real sequence $\left\{a_{k}\right\}$, let $C_{n}=\frac{a_{1}+\cdots+a_{n}}{n}$ be the sequence of averages (arithmetic mean).
a) Give an example where the a_{n} 's doesn't converge but the averages do converge.
b) If a_{k} converges to A, show that also C_{n} converges, and to A.
c) If the $a_{k} \geq 0$ and the averages converge, must the a_{k} 's be bounded? (Proof or counterexample)
[Last revised: October 5, 2010]

