Math508, Fall 2010

Jerry L. Kazdan

Problem Set 3

DUE: Thurs. Sept. 30, 2010. Late papers will be accepted until 1:00 PM Friday.

- 1. Find all (complex) roots z = x + iy of $z^2 = i$.
- 2. Let $x_n > 0$ be a sequence of real numbers with the property that they converge to a real number c > 0. Prove there is a real number m > 0 such that $x_n > m$ for all n = 1, 2, ...
- 3. Let $x_k \in \mathbb{R}$, $x_k \neq 0$ be a sequence of real numbers. If $x_k \to c \neq 0$, show that $1/x_k \to 1/c$.
- 4. Calculate $\lim_{n \to \infty} \sqrt{n^2 + n} n$.
- 5. If c > 0, show that $\frac{c^n}{n!} \to 0$ as $n \to \infty$.
- 6. Let a_n be an increasing sequence of real numbers that is bounded above, so there is an M such that $a_n < M$ for all n = 1, 2, 3, ... Show there is a real number A such that $a_n \rightarrow A$.
- 7. Let $p_k = (x_k, y_k) \in \mathbb{R}^2$, k = 1, 2, ... be a sequence of points in the plane (with the usual Euclidean metric). Show that $\{p_k\}$ converges to p = (x, y) if and only if $x_k \to x$ and $y_k \to y$.
- 8. [NEWTON] Let A > 0 and $x_1 > 0$. Define $x_{n+1} = \frac{1}{2} \left(x_n + \frac{A}{x_n} \right)$. The following steps show that $x_n \to \sqrt{A}$.
 - a) Show that after the first term, the sequence $\{x_n\}$ is monotonically decreasing and that $x_2^2 \ge A$ (hence $x_n^2 \ge A$ for $n \ge 2$).
 - b) Show the x_n converge to some real number L and, using the definition of x_n , that $L^2 = A$.
- 9. a) Give an example of a nested sequence of open intervals whose intersection is empty.
 - b) Give an example of a sequence of closed intervals $J_{k+1} \supset J_k$, k = 1, 2, ..., whose union is the *open* interval (-2, 2).
- 10. [From Homework Set 0] Let $z, w, v \in \mathbb{C}$ be complex numbers.
 - a) Show that $|z w| \ge |z v| |v w|$.
 - b) Graph the points z = x + iy in the complex plane that satisfy 1 < |z i| < 2.

c) Let $z, w \in \mathbb{C}$ be complex numbers with |z| < 1 and |w| = 1. Show that

$$\left|\frac{w-z}{1-\bar{z}w}\right| = 1.$$

Bonus Problem (Due Oct. 1)

- B-1 Given a real sequence $\{a_k\}$, let $C_n = \frac{a_1 + \dots + a_n}{n}$ be the sequence of averages (*arithmetic mean*).
 - a) Give an example where the a_n 's doesn't converge but the averages do converge.
 - b) If a_k converges to A, show that also C_n converges, and to A.
 - c) If the $a_k \ge 0$ and the averages converge, must the a_k 's be bounded? (Proof or counterexample)

[Last revised: October 5, 2010]