Math508, Fall 2010

Jerry L. Kazdan

Problem Set 4

DUE: Thurs. Oct 7, 2010. Late papers will be accepted until 1:00 PM Friday.

- 1. a) Calculate $\lim_{n \to \infty} \frac{5n+17}{n+2}$. b) Let $a_n := \frac{3n^2 - 2n + 17}{n^2 + 21n + 2}$. Calculate $\lim_{n \to \infty} a_n$.
- 2. Investigate the convergence or divergence of $\sum a_n$ if

a).
$$a_n = \sqrt{n+1} - \sqrt{n}$$
 b). $a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$ c). $a_n = \frac{1}{1+z^n}$ (complex z)

- 3. Let $\{a_n\}$ and $\{b_n\}$ be any real bounded sequences.
 - a) Show that

$$\limsup_{n\to\infty}(a_n+b_n)\leq\limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n$$

provided the sum on the right is not of the form $\infty - \infty$.

- b) Give an explicit example where strict inequality can occur.
- 4. [Hoffman, p. 36 #10] Let *S* be a (linear) subspace of \mathbb{R}^n . If $X \in \mathbb{R}^n$, let P(X) be the orthogonal projection of *X* into the subspace *S*. If X_k converges to *X*, show that $P(X_k)$ converges to P(X).
- 5. If $\{b_k\}$ is a sequence of positive numbers, prove the *arithmetic-geometric mean inequality*

$$[b_1b_2\cdots b_n]^{1/n}\leq \frac{b_1+\cdots+b_n}{n}.$$

When does equality hold?

6. Assume $a_n > 0$. If $\sum a_n$ converges and $\{b_n\}$ is bounded, prove that $\sum a_n b_n$ converges.

The next three problems are variations on just one idea.

7. Let $\{a_n\}$ be a sequence of real numbers with the property that

$$|a_{k+1} - a_k| \le \frac{1}{2}|a_k - a_{k-1}|, \qquad k = 1, 2, \dots$$

Show that this sequence converges to some real number.

- 8. a) Let $X_j, j = 1, 2, ...$ be a sequence of points in \mathbb{R}^3 . If $||X_{j+1} X_j|| \le \frac{1}{j^4}$, show that these points converge.
 - b) Let $\{X_j\}$ be a sequence of points in \mathbb{R}^n with the property that

$$\sum_{j} \|X_{j+1} - X_j\| < \infty$$

Prove that the sequence $\{X_j\}$ converges. Give an example of a convergent sequence that does not have this property.

- 9. In a metric space *M* let d(x,y) denote the distance. A sequence x_j is called a *fast Cauchy* sequence if $\sum_j d(x_{j+1}, x_j) < \infty$.
 - a) In \mathbb{R} give an example of a fast Cauchy sequence and also of a Cauchy sequence that is *not* fast.
 - b) Show that every fast Cauchy sequence is indeed a Cauchy sequence.
 - c) If there is a constant 0 < c < 1 such that for all j

$$d(x_{j+1}, x_j) < cd(x_j, x_{j-1})$$

show that x_j is a fast Cauchy sequence.

Bonus Problems (Due Oct. 7)

1B Define two real numbers x and y to be equal if |x-y| is an integer, thus we have a "topological circle" whose "circumference" is one.

Let α be an *irrational* real number, $0 < \alpha < 1$ and consider its integer multiples, α , 2α , 3α Show that this set is dense in $0 \le x \le 1$.

[Last revised: December 16, 2010]