Problem Set 4

DuE: Thurs. Oct 7, 2010. Late papers will be accepted until 1:00 PM Friday.

1. a) Calculate $\lim _{n \rightarrow \infty} \frac{5 n+17}{n+2}$.
b) Let $a_{n}:=\frac{3 n^{2}-2 n+17}{n^{2}+21 n+2}$. Calculate $\lim _{n \rightarrow \infty} a_{n}$.
2. Investigate the convergence or divergence of $\sum a_{n}$ if
a). $a_{n}=\sqrt{n+1}-\sqrt{n}$
b). $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$
c). $a_{n}=\frac{1}{1+z^{n}}($ complex $z)$
3. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be any real bounded sequences.
a) Show that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

provided the sum on the right is not of the form $\infty-\infty$.
b) Give an explicit example where strict inequality can occur.
4. [Hoffman, p. 36\#10] Let S be a (linear) subspace of \mathbb{R}^{n}. If $X \in \mathbb{R}^{n}$, let $P(X)$ be the orthogonal projection of X into the subspace S. If X_{k} converges to X, show that $P\left(X_{k}\right)$ converges to $P(X)$.
5. If $\left\{b_{k}\right\}$ is a sequence of positive numbers, prove the arithmetic-geometric mean inequality

$$
\left[b_{1} b_{2} \cdots b_{n}\right]^{1 / n} \leq \frac{b_{1}+\cdots+b_{n}}{n}
$$

When does equality hold?
6. Assume $a_{n}>0$. If $\sum a_{n}$ converges and $\left\{b_{n}\right\}$ is bounded, prove that $\sum a_{n} b_{n}$ converges.

The next three problems are variations on just one idea.

7. Let $\left\{a_{n}\right\}$ be a sequence of real numbers with the property that

$$
\left|a_{k+1}-a_{k}\right| \leq \frac{1}{2}\left|a_{k}-a_{k-1}\right|, \quad k=1,2, \ldots
$$

Show that this sequence converges to some real number.
8. a) Let $X_{j}, j=1,2, \ldots$ be a sequence of points in \mathbb{R}^{3}. If $\left\|X_{j+1}-X_{j}\right\| \leq \frac{1}{j^{4}}$, show that these points converge.
b) Let $\left\{X_{j}\right\}$ be a sequence of points in \mathbb{R}^{n} with the property that

$$
\sum_{j}\left\|X_{j+1}-X_{j}\right\|<\infty
$$

Prove that the sequence $\left\{X_{j}\right\}$ converges. Give an example of a convergent sequence that does not have this property.
9. In a metric space M let $d(x, y)$ denote the distance. A sequence x_{j} is called a fast Cauchy sequence if $\sum_{j} d\left(x_{j+1}, x_{j}\right)<\infty$.
a) In \mathbb{R} give an example of a fast Cauchy sequence and also of a Cauchy sequence that is not fast.
b) Show that every fast Cauchy sequence is indeed a Cauchy sequence.
c) If there is a constant $0<c<1$ such that for all j

$$
d\left(x_{j+1}, x_{j}\right)<c d\left(x_{j}, x_{j-1}\right)
$$

show that x_{j} is a fast Cauchy sequence.

Bonus Problems (Due Oct. 7)

1B Define two real numbers x and y to be equal if $|x-y|$ is an integer, thus we have a "topological circle" whose "circumference" is one.
Let α be an irrational real number, $0<\alpha<1$ and consider its integer multiples, $\alpha, 2 \alpha, 3 \alpha$ \ldots.. Show that this set is dense in $0 \leq x \leq 1$.
[Last revised: December 16, 2010]

