Problem Set 5

DUE: Thurs. Oct. 21, 2010. Late papers will be accepted until 1:00 PM Friday.

- 1. [Ratio Test] Let a_k be a sequence of complex numbers. Ley $s := \limsup \left| \frac{a_{k+1}}{a_k} \right|$. By comparison with a geometric series, show that the series $\sum a_k$ converges absolutely if s < 1.
- 2. Let *A* be a square matrix.
 - a) Show that $e^{(s+t)A} = e^{sA}e^{tA}$ for all real or complex *s*, *t*.
 - b) If AB = BA, the Hoffman text (p. 48) shows that $e^{A+B} = e^A e^B$. Give an example showing this may be false if A and B don't commute.
 - c) If A is any square matrix, show that e^A is invertable.
 - d) If A is a 3×3 diagonal matrix, compute e^A .
 - e) If A and B are similar matrices (so $A = S^{-1}BS$ for some invertible matrix S), show that $e^A = S^{-1}e^BS$. [In particular, if A is similar to a diagonal matrix D, then by the previous part, $e^A = S^{-1}e^DS$ is easy to compute.]
 - f) If $A^2 = 0$, compute e^A .

g) Compute
$$e^A$$
 for the matrix $A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

- h) If *P* is a projection (so $P^2 = P$) and $t \in \mathbb{R}$, compute e^{tP} .
- i) If *R* is a reflection (so $R^2 = I$) and $t \in \mathbb{R}$, compute e^{tR} .
- j) For real t show that

$$e^{\begin{pmatrix} 0 & -t \\ t & 0 \end{pmatrix}} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}.$$

(The matrix on the right is a rotation of \mathbb{R}^2 through the angle *t*).

k) If a (square) matrix A satisfies $A^2 = \alpha^2 I$, show that

$$e^A = \cosh \alpha I + \frac{\sinh \alpha}{\alpha} A.$$

1) If a square matrix A satisfies $A^3 = \alpha^2 A$ for some real or complex α , show that

$$e^{A} = I + \frac{\sinh \alpha}{\alpha}A + \frac{\cosh \alpha - 1}{\alpha^{2}}A^{2}.$$

[This formula generalizes the previous part.] What is the formula if $A^3 = -\alpha^2 A$?

- 3. [Hoffman, p.55#4] Let $\{x_k\}$ be a Cauchy sequence in an arbitrary metric space \mathcal{M} . If a subsequence converges to some element $A \in \mathcal{M}$, show that the original sequence also converges to A.
- 4. [Hoffman, p.55 #5] Let $\{x_k\}$ be a bounded sequence of real numbers with the property that $|x_{k+1} x_k| = 1$ for each k = 1, 2, ... Show that this sequence has only a finite number of accumulation points.
- 5. [Hoffman, p.62 #1-2] The point of this problem is for you to prove with your bare hands that \mathbb{R}^n is connected. As usual, I suggest first trying the special case n = 1.
 - a) Show that the empty set and all of \mathbb{R}^n are both open and closed sets.
 - b) Conversely, if a set $S \subset \mathbb{R}^n$ is both open and closed, show it is either the empty set or all of \mathbb{R}^n .
- 6. [Hoffman, p.62 #4] Which of the following subsets of \mathbb{C} are open? Closed?
 - a) All z such that $z = \overline{z}$.
 - b) All *z* that satisfy $z\overline{z} > 2$.
 - c) All $z \neq 0$ such that $|z| \leq 1$.
 - d) All z such that |z| is a rational number.
- 7. [Hoffman, p.62 #13] Let $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^k$ be given sete. The *Cartesian product* $A \times B$ is the set of all points $(x, y) \in \mathbb{R}^{n+k}$ where $x \in A$ and $y \in B$. Prove that
 - a) if both A and B are bounded, then so is $A \times B$.
 - b) if both A and B are open, then so is $A \times B$;
 - c) if both A and B are closed, then so is $A \times B$;
- 8. Show that the set of all $n \times n$ real orthogonal matrices is both closed and bounded. [REMARK: There are many (equivalent) definitions for an orthogonal matrix. Use whichever you prefer.]

Bonus Problems (Due Oct 21)

1B. In class we defined the normed linear space ℓ_2 as the set of all real (or complex) sequences $x = (x_1, x_2, ...)$ such that $||x||_2 := [\sum |x_j|^2]^{1/2} < \infty$. Prove this space complete. SUGGESTION: As a model, see the example of ℓ_1 in http://www.math.upenn.edu/~kazdan/508F08/completeness-l_1.pdf

[Last revised: October 19, 2010]