Problem Set 5

DuE: Thurs. Oct. 21, 2010. Late papers will be accepted until 1:00 PM Friday.

1. [Ratio Test] Let a_{k} be a sequence of complex numbers. Ley $s:=\lim \sup \left|\frac{a_{k+1}}{a_{k}}\right|$. By comparison with a geometric series, show that the series $\sum a_{k}$ converges absolutely if $s<1$.
2. Let A be a square matrix.
a) Show that $e^{(s+t) A}=e^{s A} e^{t A}$ for all real or complex s, t.
b) If $A B=B A$, the Hoffman text (p. 48) shows that $e^{A+B}=e^{A} e^{B}$. Give an example showing this may be false if A and B don't commute.
c) If A is any square matrix, show that e^{A} is invertable.
d) If A is a 3×3 diagonal matrix, compute e^{A}.
e) If A and B are similar matrices (so $A=S^{-1} B S$ for some invertible matrix S), show that $e^{A}=S^{-1} e^{B} S$. [In particular, if A is similar to a diagonal matrix D, then by the previous part, $e^{A}=S^{-1} e^{D} S$ is easy to compute.]
f) If $A^{2}=0$, compute e^{A}.
g) Compute e^{A} for the matrix $A=\left(\begin{array}{rrrr}0 & 1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0\end{array}\right)$.
h) If P is a projection (so $P^{2}=P$) and $t \in \mathbb{R}$, compute $e^{t P}$.
i) If R is a reflection (so $R^{2}=I$) and $t \in \mathbb{R}$, compute $e^{t R}$.
j) For real t show that

$$
e^{\left(\begin{array}{cc}
0 & -t \\
t & 0
\end{array}\right)}=\left(\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

(The matrix on the right is a rotation of \mathbb{R}^{2} through the angle t).
k) If a (square) matrix A satisfies $A^{2}=\alpha^{2} I$, show that

$$
e^{A}=\cosh \alpha I+\frac{\sinh \alpha}{\alpha} A
$$

1) If a square matrix A satisfies $A^{3}=\alpha^{2} A$ for some real or complex α, show that

$$
e^{A}=I+\frac{\sinh \alpha}{\alpha} A+\frac{\cosh \alpha-1}{\alpha^{2}} A^{2}
$$

[This formula generalizes the previous part.] What is the formula if $A^{3}=-\alpha^{2} A$?
3. [Hoffman, p.55\#4] Let $\left\{x_{k}\right\}$ be a Cauchy sequence in an arbitrary metric space \mathcal{M}. If a subsequence converges to some element $A \in \mathcal{M}$, show that the original sequence also converges to A.
4. [Hoffman, p. 55 \#5] Let $\left\{x_{k}\right\}$ be a bounded sequence of real numbers with the property that $\left|x_{k+1}-x_{k}\right|=1$ for each $k=1,2, \ldots$. Show that this sequence has only a finite number of accumulation points.
5. [Hoffman, p. 62 \#1-2] The point of this problem is for you to prove with your bare hands that \mathbb{R}^{n} is connected. As usual, I suggest first trying the special case $n=1$.
a) Show that the empty set and all of \mathbb{R}^{n} are both open and closed sets.
b) Conversely, if a set $S \subset \mathbb{R}^{n}$ is both open and closed, show it is either the empty set or all of \mathbb{R}^{n}.
6. [Hoffman, p. 62 \#4] Which of the following subsets of \mathbb{C} are open? Closed?
a) All z such that $z=\bar{z}$.
b) All z that satisfy $z \bar{z}>2$.
c) All $z \neq 0$ such that $|z| \leq 1$.
d) All z such that $|z|$ is a rational number.
7. [Hoffman, p. $62 \# 13]$ Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{k}$ be given sete. The Cartesian product $A \times B$ is the set of all points $(x, y) \in \mathbb{R}^{n+k}$ where $x \in A$ and $y \in B$. Prove that
a) if both A and B are bounded, then so is $A \times B$.
b) if both A and B are open, then so is $A \times B$;
c) if both A and B are closed, then so is $A \times B$;
8. Show that the set of all $n \times n$ real orthogonal matrices is both closed and bounded. [REMARK: There are many (equivalent) definitions for an orthogonal matrix. Use whichever you prefer.]

Bonus Problems (Due Oct 21)

1B. In class we defined the normed linear space ℓ_{2} as the set of all real (or complex) sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ such that $\|x\|_{2}:=\left[\sum\left|x_{j}\right|^{2}\right]^{1 / 2}<\infty$. Prove this spaceis complete. Suggestion: As a model, see the example of ℓ_{1} in http://www.math.upenn.edu/~kazdan/508F08/completeness-l_1.pdf
[Last revised: October 19, 2010]

