Math508, Fall 2010

Jerry L. Kazdan

Problem Set 6

DUE: Thurs. Oct. 28, 2010. Late papers will be accepted until 1:00 PM Friday.

- 1. Give examples of the following:
 - a) An open cover of $\{x \in \mathbb{R} : 0 < x \le 1\}$ that has no finite sub-cover.
 - b) A metric space having a bounded infinite sequence with no convergent subsequence.
 - c) A metric space that is not complete.
- 2. Let K be a compact set in a metric space \mathcal{M} and let $p \in \mathcal{M}$ be a point *not* in K. Define the distance dist(p, K) between p and K as

$$\operatorname{dist}(p,K) = \inf_{x \in K} d(p,x).$$

- a) Show there is at least one point $q \in K$ that has this minimum distance, so d(p,q) = dist(p,K)
- b) Is there a *unique* such point q? Proof or counterexample.
- c) Is the assertion in part a) still true if you only assume that K is a closed (but not compact) subset of \mathbb{R}^2 ? Proof or counterexample.
- 3. For any two sets S, T in a metric space, define the *distance* between these sets as

$$\operatorname{dist}(S,T) = \inf_{x \in S, y \in T} d(x,y).$$

Assume both S and T are compact, and their intersection, $S \cap T$, is empty.

- a) Prove that there are points $p \in S$ and $q \in T$ with dist(S,T) = d(p,q).
- b) Is dist(S,T) > 0 necessarily true? Justify your assertion.
- c) Give an example of disjoint closed sets S, T in \mathbb{R}^2 with the property that dist(S,T) = 0.
- 4. Let $f : \mathbb{R}^n \to \mathbb{R}^k$ have the property; for some constant *m* one has

$$|f(x) - f(\hat{x})| \le m|x - \hat{x}|$$
 for all $x, \hat{x} \in \mathbb{R}^n$.

Show that f is uniformly continuous on \mathbb{R}^n .

REMARK: We will later show that if f is differentiable and its derivative is bounded by m, then it has the above property. This is one version of the *mean value theorem*.

5. Let $f : \mathbb{R} \to \mathbb{R}$ have the property: $|f(x) - f(\hat{x})| \le c|x - \hat{x}|$ for all real x, \hat{x} , where $0 \le c < 1$ is a constant. Given any starting point x_0 , define $x_j, j = 1, 2, ...$, recursively by the rule

$$x_{j+1} = f(x_j)$$

Prove that the x_j converge to some real number, say p, and that f(p) = p. In other words, p is a *fixed point* of f.

If c = 1, give an example of a function f that has no fixed points.

- 6. Show, directly from the definition, that \sqrt{x} is continuous at every $x \ge 0$. Is it uniformly continuous for every $x \in [0, \infty)$? Why?
- 7. Which of the following are uniformly continuous in the set $\{x \ge 0\}$? Justify your assertions. a). f(x) = 2 + 3x b). $g(x) = \sin 2x$ c). $h(x) = 1 + x^2$ d). $k(x) = \sqrt{x+1}$,
- 8. Assume that f(x) is uniformly continuous on the bounded open interval a < x < b. Prove that f is bounded, that is, there is some M so that $|f(x)| \le M$ for all $x \in (a, b)$.
- 9. Let $E \subset \mathbb{R}$ be a set and $f : E \to \mathbb{R}$ be uniformly continuous.
 - a) If E is a bounded set, show that f(E) is a bounded set.
 - b) If E is not bounded, give an example showing that f(E) might not be bounded.
 - c) If $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous on *all* of \mathbb{R} , show there are constants *a* and *b* so that

$$|f(x)| \le a + b|x|.$$

Bonus Problem (Due Oct 28)

B-1 Let f(x) be a continuous real-valued function with the property

$$f(x+y) = f(x) + f(y)$$

for all real x, y. Show that f(x) = cx, where c := f(1). [Hint: f(2) = ?] REMARK: There is a very short proof if you assume f is differentiable.

B-2 Define f(z) for complex z by the power series $f(z) := \sum_{k=0}^{\infty} a_k z^k$,

Assume this series converges in the disk |z| < R. Prove (with your bare hands) that f is continuous at every point of this (open) disk. [REMARK: You might (or might not) find it simpler to prove the stronger statement that if 0 < r < R, then f(z) is uniformly continuous in the closed disk $\{|z| \le r\}$.]

[Last revised: December 16, 2010]