Problem Set 6

DuE: Thurs. Oct. 28, 2010. Late papers will be accepted until 1:00 PM Friday.

1. Give examples of the following:
a) An open cover of $\{x \in \mathbb{R}: 0<x \leq 1\}$ that has no finite sub-cover.
b) A metric space having a bounded infinite sequence with no convergent subsequence.
c) A metric space that is not complete.
2. Let K be a compact set in a metric space \mathcal{M} and let $p \in \mathcal{M}$ be a point not in K. Define the distance $\operatorname{dist}(p, K)$ between p and K as

$$
\operatorname{dist}(p, K)=\inf _{x \in K} d(p, x)
$$

a) Show there is at least one point $q \in K$ that has this minimum distance, so $d(p, q)=$ $\operatorname{dist}(p, K)$
b) Is there a unique such point q ? Proof or counterexample.
c) Is the assertion in part a) still true if you only assume that K is a closed (but not compact) subset of \mathbb{R}^{2} ? Proof or counterexample.
3. For any two sets S, T in a metric space, define the distance between these sets as

$$
\operatorname{dist}(S, T)=\inf _{x \in S, y \in T} d(x, y)
$$

Assume both S and T are compact, and their intersection, $S \cap T$, is empty.
a) Prove that there are points $p \in S$ and $q \in T$ with $\operatorname{dist}(S, T)=d(p, q)$.
b) Is $\operatorname{dist}(S, T)>0$ necessarily true? Justify your assertion.
c) Give an example of disjoint closed sets S, T in \mathbb{R}^{2} with the property that $\operatorname{dist}(S, T)=0$.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ have the property; for some constant m one has

$$
|f(x)-f(\hat{x})| \leq m|x-\hat{x}| \quad \text { for all } \quad x, \hat{x} \in \mathbb{R}^{n}
$$

Show that f is uniformly continuous on \mathbb{R}^{n}.
REMARK: We will later show that if f is differentiable and its derivative is bounded by m, then it has the above property. This is one version of the mean value theorem.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ have the property: $|f(x)-f(\hat{x})| \leq c|x-\hat{x}|$ for all real x, \hat{x}, where $0 \leq c<1$ is a constant. Given any starting point x_{0}, define $x_{j}, j=1,2, \ldots$, recursively by the rule

$$
x_{j+1}=f\left(x_{j}\right)
$$

Prove that the x_{j} converge to some real number, say p, and that $f(p)=p$. In other words, p is a fixed point of f.

If $c=1$, give an example of a function f that has no fixed points.
6. Show, directly from the definition, that \sqrt{x} is continuous at every $x \geq 0$. Is it uniformly continuous for every $x \in[0, \infty)$? Why?
7. Which of the following are uniformly continuous in the set $\{x \geq 0\}$? Justify your assertions.
a). $f(x)=2+3 x$
b). $g(x)=\sin 2 x$
c). $h(x)=1+x^{2}$
d). $k(x)=\sqrt{x+1}$,
8. Assume that $f(x)$ is uniformly continuous on the bounded open interval $a<x<b$. Prove that f is bounded, that is, there is some M so that $|f(x)| \leq M$ for all $x \in(a, b)$.
9. Let $E \subset \mathbb{R}$ be a set and $f: E \rightarrow \mathbb{R}$ be uniformly continuous.
a) If E is a bounded set, show that $f(E)$ is a bounded set.
b) If E is not bounded, give an example showing that $f(E)$ might not be bounded.
c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous on all of \mathbb{R}, show there are constants a and b so that

$$
|f(x)| \leq a+b|x|
$$

Bonus Problem (Due Oct 28)

B-1 Let $f(x)$ be a continuous real-valued function with the property

$$
f(x+y)=f(x)+f(y)
$$

for all real x, y. Show that $f(x)=c x$, where $c:=f(1)$. [Hint: $f(2)=$?]
REMARK: There is a very short proof if you assume f is differentiable.

B-2 Define $f(z)$ for complex z by the power series $f(z):=\sum_{k=0}^{\infty} a_{k} z^{k}$,
Assume this series converges in the disk $|z|<R$. Prove (with your bare hands) that f is continuous at every point of this (open) disk. [REMARK: You might (or might not) find it simpler to prove the stronger statement that if $0<r<R$, then $f(z)$ is uniformly continuous in the closed disk $\{|z| \leq r\}$.]
[Last revised: December 16, 2010]

