Problem Set 7

DuE: Thurs. Nov. 4, 2010. Late papers will be accepted until 1:00 PM Friday.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Let $f:[a, \infty) \rightarrow \mathbb{R}$ be a smooth function whose first derivative is bounded: $\left|f^{\prime}(x)\right| \leq M$ for all $x \geq a$. Prove that it is uniformly continuous on $[a, \infty)$.
As immediate examples, $x^{1 / 3}$ is uniformly continuous for all $x \geq 1$ and $\cos x$ is uniformly continuous for all x.
2. a) Show that $\sin x$ is not a polynomial.
b) Show that $\sin x$ is not a rational function, that is, it cannot be the quotient of two polynomials.
c) Let $f(t)$ be periodic with period 1 , so $f(t+1)=f(t)$ for all real t. If f is not a constant, show that it cannot be a rational function. that is, f cannot be the quotient of two polynomials.
d) Show that e^{x} is not a rational function.
3. a) If a smooth function $f(x)$ has the property that $f^{\prime \prime}(x) \geq 0$ for all x, show that it is convex, that is, at every point the graph of the curve $y=f(x)$ lies above all its tangent lines.
b) Let $v(x)$ be a smooth real-valued function for $0 \leq x \leq 1$. If $v(0)=v(1)=0$ and $v^{\prime \prime}(x)>0$ for all $0 \leq x \leq 1$, show that $v(x) \leq 0$ for all $0 \leq x \leq 1$.
c) Prove that the function e^{x} is convex.
d) Show that $e^{x} \geq 1+x$ for all real x.
4. a) Let $p(x):=x^{3}+c x+d$, where c, and d are real. Under what conditions on c and d does this has three distinct real roots? [ANSWER: $c<0$ and $d^{2}<-4 c^{3} / 27$].
b) Generalize to the real polynomial $p(x):=a x^{3}+b x^{2}+c x+d(a \neq 0)$ by a change of variable $t=x-\alpha$ (with a clever choice of α) to reduce to the above special case.
5. Let

$$
p_{n}(x):=\left(\frac{d}{d x}\right)^{n}\left(1-x^{2}\right)^{n}
$$

This is a polynomial of degree n. Show that it has n real distinct zeroes, all in the interval $-1<x<1$.
6. a) For any integer $n \geq 0$, show that $\lim _{x \searrow 0} \frac{e^{-1 / x}}{x^{n}}=0$.
b) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}e^{-\frac{1}{x}} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

Sketch the graph of f.
c) Show that f is a smooth function for all real x.
d) Show that each of the following are smooth and sketch their graphs:

$$
\left.\begin{array}{rlrl}
g(x) & =f(x) f(1-x) & & h(x)
\end{array}=\frac{f(x)}{f(x)+f(1-x)}, \begin{array}{l}
k(x)
\end{array}\right)=k(x+2), ~(x)=h(x) h(4-x) \quad \Phi(x)=K(\|x\|), x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

Bonus Problem (Due Nov 4)

B-1 [Interpolation] Let $x_{0}<x_{1}<x_{2}$ be distinct real numbers and $f(x)$ a smooth function.
a) Show there is a unique quadratic polynomial $p(x)$ with the property that $p\left(x_{j}\right)=f\left(x_{j}\right)$ for $j=0,1,2$.
b) [Remainder term in interpolation] If b is in the open interval $\left(x_{0}, x_{2}\right)$ with $b \neq x_{j}, j=$ $0,1,2$, show there is a point c (depending on b) in the interval $\left(x_{0}, x_{2}\right)$ so that

$$
f(b)=p(b)+\frac{f^{\prime \prime \prime}(c)}{3!}\left(b-x_{0}\right)\left(b-x_{1}\right)\left(b-x_{2}\right)
$$

[SUGGESTION: Define the constant M by

$$
f(b)=p(b)+M\left(b-x_{0}\right)\left(b-x_{1}\right)\left(b-x_{2}\right)
$$

and look at

$$
\left.g(x):=f(x)-\left[p(x)+M\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right] .\right]
$$

B-2 In ℓ_{1} let S be the set of unit vectors $e_{1}=(1,0,0, \ldots), e_{2}=(0,1,0,0,0, \ldots)$ etc. This set S is both closed and bounded. Give an example of a continuous $f: S \rightarrow R$ that is bounded from above, say $\sup _{x \in S} f(x)=c$ but there is no point $p \in S$ where $f(p)=c$.
MORAL: In a normed linear space the condition of a set being compact is much stronger than just closed and bounded.
[Last revised: October 28, 2010]

