Problem Set 8

DUE: Thurs. Nov. 11, 2010. Late papers will be accepted until 1:00 PM Friday.

Note: We say a function is *smooth* if its derivatives of all orders exist and are continuous.

- 1. a) Let A(t) and B(t) be n×n matrices whose elements depend smoothly on the real variable t. Use the definition of the derivative (as a limit) to show that their product, G(t) = A(t)B(t), is differentiable. What is the derivative of A²(t)?
 - b) Give an example of a 2×2 matrix A(t) that depends smoothly on the real variable t with

$$\frac{dA^2(t)}{dt} \neq 2A(t)A'(t)$$

- 2. Consider two smooth plane curves $\gamma_1, \gamma_2: (0, 1) \to \mathbb{R}^2$ that do not intersect. Suppose P_1 and P_2 are interior points on γ_1 and γ_2 , respectively, such that the distance $|P_1P_2|$ is minimal. Prove that the straight line P_1P_2 is perpendicular to *both* curves.
- 3. Let A(t) be a square matrix that depends continuously on t for all $t \in \mathbb{R}$ and let the vector u(t) be a solution of the differential equation

$$\frac{du(t)}{dt} = A(t)u(t) \quad \text{with} \quad u(0) = 0.$$

Show that $u(t) \equiv 0$. [SUGGESTION: Let $E(t) = |u(t)|^2$. You will need the Schwarz inequality and that $|A(t)u(t)| \le |A(t)||u(t)|$.]

- 4. Let w(x) be a smooth function that satisfies w'' c(x)w = 0, where c(x) > 0 is a given continuous function.
 - a) Show that *w* cannot have a local positive maximum (that is, a local maximum where the function is positive). Also show that *w* cannot have a local negative minimum.
 - b) Show that if in addition there are points a < b where w(a) = 0 and w(b) = 0, then w(x) = 0 for all $a \le x \le b$.
 - c) Give an example with c(x) < 0 where the conclusion of the previous part fails.
- 5. Let $a(\theta) > 0$ and $b(\theta) > 0$ be positive smooth functions for $\theta \in [0, 2\pi]$ and assume they are periodic with period 2π , so, for instance $a(\theta + 2\pi) = a(\theta)$ for all real θ . In brief, we are working on a circle. Think of a smooth function $u(\theta)$ as measuring the temperature, so u and

all of its derivatives are periodic with period 2π . Say $u(\theta)$ is a $(2\pi \text{ periodic})$ solution of the nonlinear equation

$$u'' = a(\theta)e^u - b(\theta).$$

- a) Find an upper bound for $u(\theta)$ in terms of $a(\theta)$ and $b(\theta)$. [SUGGESTION: Look at the point where *u* has its maximum value.]
- b) Find a lower bound for $u(\theta)$ in terms of $a(\theta)$ and $b(\theta)$.
- 6. Use the definition of the integral as the limit of a sum to compute

a).
$$\int_0^b x^2 dx$$
 b). $\int_0^x \cos \theta d\theta$.

[See http://www.math.upenn.edu/~kazdan/202F09/sum-sin_kx.pdf]

7. Compute $\lim_{\lambda \to \infty} \int_0^1 |\sin(\lambda x)| dx$.

Bonus Problems (Due Nov 11)

- B-1 Let f(x) be a continuous function for $0 \le x \le 1$. Evaluate $\lim_{n \to \infty} \int_0^1 n f(x) x^n dx$. (Justify your assertions.)
- B-2 For x > 0 define the function

$$H(x) = \int_1^x \frac{1}{t} dt.$$

Since the integrand, 1/t is a continuous function on the interval [1,x] (if $x \ge 1$) or [x.1] (if $x \le 1$), this is Riemann integrable.

Use the definition of the Riemann integral directly to show that for any y > 0,

$$H(x) + H(y) = H(xy), \tag{1}$$

thus establishing that H(x) has the basic property of the logarithm. SUGGESTION: First prove (1) assuming $x \ge 1$ (and any y > 0) by rewriting (1) in the form H(x) = H(xy) - H(y), that is,

$$\int_1^x \frac{1}{t} dt = \int_y^{xy} \frac{1}{s} ds$$

and use a geometric argument that relates a Riemann sum for the integral on the left to a corresponding Riemann sum on the right. [First try the special case x = 2, y = 2.]

If 0 < x < 1, then 1/x > 1, so the result (1) follows from the case $x \ge 1$ by the clever chain:

$$\begin{split} H(x) + H(y) &= H(x) + H(\frac{1}{x}xy) = H(x) + [H(\frac{1}{x}) + H(xy)] \\ &= H(\frac{1}{x}) + H(x) + H(xy) = H(\frac{1}{x}x) + H(xy) = H(1) + H(xy) = H(xy). \end{split}$$

[Last revised: November 6, 2010]