Problem Set 8

DuE: Thurs. Nov. 11, 2010. Late papers will be accepted until 1:00 PM Friday.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. a) Let $A(t)$ and $B(t)$ be $n \times n$ matrices whose elements depend smoothly on the real variable t. Use the definition of the derivative (as a limit) to show that their product, $G(t)=$ $A(t) B(t)$, is differentiable.
What is the derivative of $A^{2}(t)$?
b) Give an example of a 2×2 matrix $A(t)$ that depends smoothly on the real variable t with

$$
\frac{d A^{2}(t)}{d t} \neq 2 A(t) A^{\prime}(t)
$$

2. Consider two smooth plane curves $\gamma_{1}, \gamma_{2}:(0,1) \rightarrow \mathbb{R}^{2}$ that do not intersect. Suppose P_{1} and P_{2} are interior points on γ_{1} and γ_{2}, respectively, such that the distance $\left|P_{1} P_{2}\right|$ is minimal. Prove that the straight line $P_{1} P_{2}$ is perpendicular to both curves.
3. Let $A(t)$ be a square matrix that depends continuously on t for all $t \in \mathbb{R}$ and let the vector $u(t)$ be a solution of the differential equation

$$
\frac{d u(t)}{d t}=A(t) u(t) \quad \text { with } \quad u(0)=0
$$

Show that $u(t) \equiv 0$. [SUGGESTION: Let $E(t)=|u(t)|^{2}$. You will need the Schwarz inequality and that $|A(t) u(t)| \leq|A(t)||u(t)|$.]
4. Let $w(x)$ be a smooth function that satisfies $w^{\prime \prime}-c(x) w=0$, where $c(x)>0$ is a given continuous function.
a) Show that w cannot have a local positive maximum (that is, a local maximum where the function is positive). Also show that w cannot have a local negative minimum.
b) Show that if in addition there are points $a<b$ where $w(a)=0$ and $w(b)=0$, then $w(x)=$ 0 for all $a \leq x \leq b$.
c) Give an example with $c(x)<0$ where the conclusion of the previous part fails.
5. Let $a(\theta)>0$ and $b(\theta)>0$ be positive smooth functions for $\theta \in[0,2 \pi]$ and assume they are periodic with period 2π, so, for instance $a(\theta+2 \pi)=a(\theta)$ for all real θ. In brief, we are working on a circle. Think of a smooth function $u(\theta)$ as measuring the temperature, so u and
all of its derivatives are periodic with period 2π. Say $u(\theta)$ is a (2π periodic) solution of the nonlinear equation

$$
u^{\prime \prime}=a(\theta) e^{u}-b(\theta)
$$

a) Find an upper bound for $u(\theta)$ in terms of $a(\theta)$ and $b(\theta)$. [SUGGESTION: Look at the point where u has its maximum value.]
b) Find a lower bound for $u(\theta)$ in terms of $a(\theta)$ and $b(\theta)$.
6. Use the definition of the integral as the limit of a sum to compute
a). $\int_{0}^{b} x^{2} d x$
b). $\int_{0}^{x} \cos \theta d \theta$.
[See http://www.math.upenn.edu/~kazdan/202F09/sum-sin_kx.pdf]
7. Compute $\lim _{\lambda \rightarrow \infty} \int_{0}^{1}|\sin (\lambda x)| d x$.

Bonus Problems (Due Nov 11)

B-1 Let $f(x)$ be a continuous function for $0 \leq x \leq 1$. Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{1} n f(x) x^{n} d x$. (Justify your assertions.)

B-2 For $x>0$ define the function

$$
H(x)=\int_{1}^{x} \frac{1}{t} d t
$$

Since the integrand, $1 / t$ is a continuous function on the interval $[1, x]$ (if $x \geq 1$) or $[x$.1] (if $x \leq 1$), this is Riemann integrable.

Use the definition of the Riemann integral directly to show that for any $y>0$,

$$
\begin{equation*}
H(x)+H(y)=H(x y) \tag{1}
\end{equation*}
$$

thus establishing that $H(x)$ has the basic property of the logarithm.
SUGGESTION: First prove (1) assuming $x \geq 1$ (and any $y>0$) by rewriting (1) in the form $H(x)=H(x y)-H(y)$, that is,

$$
\int_{1}^{x} \frac{1}{t} d t=\int_{y}^{x y} \frac{1}{s} d s
$$

and use a geometric argument that relates a Riemann sum for the integral on the left to a corresponding Riemann sum on the right. [First try the special case $x=2, y=2$.]

If $0<x<1$, then $1 / x>1$, so the result (1) follows from the case $x \geq 1$ by the clever chain:

$$
\begin{aligned}
H(x)+H(y) & =H(x)+H\left(\frac{1}{x} x y\right)=H(x)+\left[H\left(\frac{1}{x}\right)+H(x y)\right] \\
& =H\left(\frac{1}{x}\right)+H(x)+H(x y)=H\left(\frac{1}{x} x\right)+H(x y)=H(1)+H(x y)=H(x y) .
\end{aligned}
$$

[Last revised: November 6, 2010]

