Math508, Fall 2010

Jerry L. Kazdan

Problem Set 9

DUE: Thurs. Nov. 18, 2010. Late papers will be accepted until 1:00 PM Friday.

Note: We say a function is *smooth* if its derivatives of all orders exist and are continuous.

- 1. Let f(x) be a smooth function for $x \ge 1$ with the property that $f'(x) \to 0$ as $x \to \infty$.
 - a) Show that $f(n+1) f(n) \to 0$ as $n \to \infty$.
 - b) Compute $\lim_{n\to\infty} \left[\sqrt[5]{n+1} \sqrt[5]{n} \right]$.

2. Find a continuous function f and a constant C so that $\int_0^{2x} f(t) dt = 2x \cos x + e^{4x} + C.$

- 3. Let $f: [0, 1] \to \mathbb{R}$ be a continuous function.
 - a) If $\int_0^1 f(x) dx = 0$, prove that f(x) is positive somewhere and negative somewhere in this interval (unless it is identically zero).
 - b) Use this to show that $||f||_1 := \int_0^1 |f(x)| dx$ is a norm on C([0,1]).
 - c) Show that C([0,1]) with this norm is *not* complete.
- 4. Let $f(x) \in C([a,b])$. Show that

$$\exp\left[\frac{1}{b-a}\int_{a}^{b}f(x)\,dx\right] \le \frac{1}{b-a}\int_{a}^{b}\exp[f(x)]\,dx$$

[HINT: Use the inequality $e^u \ge 1 + u$ where $u = f - \bar{f}$. Here \bar{f} = average of $f = \frac{1}{b-a} \int_a^b f(x) dx$.]

5. [Hoffman, p. 143 #2] If G(x) is Riemann integrable on [a,b] and F(x) = G(x) except at one point, show that F is Riemann integrable and

$$\int_{a}^{b} F(x) \, dx = \int_{a}^{b} G(x) \, dx.$$

This obviously extends to where F(x) = G(x) except at a finite number of points.

- 6. a) If $f:[0,1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) dx = 0$ for all continuous functions g, prove that f(x) = 0 for all $x \in [0,1]$.
 - b) If $f:[0,1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^1 f(x)g(x) dx = 0$ for all C^1 functions g that satisfy g(0) = g(1) = 0, must it be true that f(x) = 0 for all $x \in [0, 1]$? Proof or counterexample.

- 7. a) If $V = (x, y, z) \in \mathbb{R}^3$ and $p \ge 1$, define $||V||_p := [|x|^p + |y|^p + |z|^p]^{1/p}$. Show that $\lim_{p \to \infty} ||V||_p = \max\{|x|, |y|, |z|\}$.
 - b) Let $f \in C([a,b])$ and for $p \ge 1$ recall the notation

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$
 and $||f||_{p} = \left[\int_{a}^{b} |f(x)|^{p} dx\right]^{1/p}$

Show that

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}$$

8. Let $f \in C([0,\infty])$ be a continuous function with the property that $\lim_{x\to\infty} f(x) = c$. Show that

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(x) \, dx = c.$$

Bonus Problems (Due Nov 18)

B-1 Let $f \in C([0,1])$. Show that $\lim_{\lambda \to \infty} \int_0^1 f(x) \sin(\lambda x) dx = 0$.

B-2 [HÖLDER'S INEQUALITY] Let p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

a) Show that $st \le \frac{s^p}{p} + \frac{t^q}{q}$ for all s, t > 0.

[SUGGESTION: There are many ways to prove this. One is to show that for any a > 0 and $s \ge 0$ the maximum of $h(s) := as - s^p/p$ occurs at $s = a^{1/(p-1)}$.]

b) Use this to show that for any complex numbers a_k , b_k

$$\sum_{k=1}^{n} |a_k b_k| \le \left[\sum_{k=1}^{n} |a_k|^p\right]^{1/p} \left[\sum_{k=1}^{n} |b_k|^q\right]^{1/q}$$

[SUGGESTION: First do the special case $\left[\sum_{k=1}^{n} |a_k|^p\right]^{1/p} = 1$ and $\left[\sum_{k=1}^{n} |b_k|^q\right]^{1/q} = 1$. Then reduce the general case to this special case.]

If p = q = 1/2 this is the Schwarz inequality.

c) Similarly, show that for any continuous functions f, g

$$\int_{a}^{b} |f(x)g(x)| \, dx \le \left[\int_{a}^{b} |f(x)|^{p} \, dx\right]^{1/p} \left[\int_{a}^{b} |g(x)|^{q} \, dx\right]^{1/q}.$$

d) Let p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. and let $X := (x_1, \dots, x_n) \in \mathbb{R}^n$ and $f \in C([a, b])$. Use Hölder's inequality (above) to prove the triangle inequality for the norms

$$||X||_p := \left[\sum_{k=1}^n |x_k|^p\right]^{1/p}$$
 and $||f||_p := \left[\int_a^b |f(x)|^p dx\right]^{1/p}$.

- B-3 (For those who have studied rings). Let C be the ring of continuous functions on the interval $0 \le x \le 1$.
 - a) If $0 \le c \le 1$, show that the subset $\{f \in C \mid f(c) = 0\}$ is a maximal ideal.
 - b) Show that *every* maximal ideal in C has this form.

[Last revised: November 7, 2014]