Problem Set 9

DUE: Thurs. Nov. 18, 2010. Late papers will be accepted until 1:00 PM Friday.

Note: We say a function is smooth if its derivatives of all orders exist and are continuous.

1. Let $f(x)$ be a smooth function for $x \geq 1$ with the property that $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$.
a) Show that $f(n+1)-f(n) \rightarrow 0$ as $n \rightarrow \infty$.
b) Compute $\lim _{n \rightarrow \infty}[\sqrt[5]{n+1}-\sqrt[5]{n}]$.
2. Find a continuous function f and a constant C so that $\int_{0}^{2 x} f(t) d t=2 x \cos x+e^{4 x}+C$.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function.
a) If $\int_{0}^{1} f(x) d x=0$, prove that $f(x)$ is positive somewhere and negative somewhere in this interval (unless it is identically zero).
b) Use this to show that $\|f\|_{1}:=\int_{0}^{1}|f(x)| d x$ is a norm on $C([0,1])$.
c) Show that $C([0,1])$ with this norm is not complete.
4. Let $f(x) \in C([a, b])$. Show that

$$
\exp \left[\frac{1}{b-a} \int_{a}^{b} f(x) d x\right] \leq \frac{1}{b-a} \int_{a}^{b} \exp [f(x)] d x
$$

[HINT: Use the inequality $e^{u} \geq 1+u$ where $u=f-\bar{f}$. Here $\bar{f}=$ average of $f=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.]
5. [Hoffman, p. 143 \#2] If $G(x)$ is Riemann integrable on $[a, b]$ and $F(x)=G(x)$ except at one point, show that F is Riemann integrable and

$$
\int_{a}^{b} F(x) d x=\int_{a}^{b} G(x) d x .
$$

This obviously extends to where $F(x)=G(x)$ except at a finite number of points.
6. a) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all continuous functions g, prove that $f(x)=0$ for all $x \in[0,1]$.
b) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function with the property that $\int_{0}^{1} f(x) g(x) d x=0$ for all C^{1} functions g that satisfy $g(0)=g(1)=0$, must it be true that $f(x)=0$ for all $x \in[0,1]$? Proof or counterexample.
7. a) If $V=(x, y, z) \in \mathbb{R}^{3}$ and $p \geq 1$, define $\|V\|_{p}:=\left[|x|^{p}+|y|^{p}+|z|^{p}\right]^{1 / p}$. Show that $\lim _{p \rightarrow \infty}\|V\|_{p}=$ $\max \{|x|,|y|,|z|\}$.
b) Let $f \in C([a, b])$ and for $p \geq 1$ recall the notation

$$
\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)| \quad \text { and } \quad\|f\|_{p}=\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{1 / p}
$$

Show that

$$
\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}
$$

8. Let $f \in C([0, \infty])$ be a continuous function with the property that $\lim _{x \rightarrow \infty} f(x)=c$. Show that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} f(x) d x=c
$$

Bonus Problems (Due Nov 18)

B-1 Let $f \in C([0,1])$. Show that $\lim _{\lambda \rightarrow \infty} \int_{0}^{1} f(x) \sin (\lambda x) d x=0$.

B-2 [HÖLDER'S INEQUALITY] Let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
a) Show that $s t \leq \frac{s^{p}}{p}+\frac{t^{q}}{q}$ for all $s, t>0$.
[SUGGESTION: There are many ways to prove this. One is to show that for any $a>0$ and $s \geq 0$ the maximum of $h(s):=a s-s^{p} / p$ occurs at $s=a^{1 /(p-1)}$.]
b) Use this to show that for any complex numbers a_{k}, b_{k}

$$
\sum_{k=1}^{n}\left|a_{k} b_{k}\right| \leq\left[\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right]^{1 / p}\left[\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right]^{1 / q} .
$$

[SUGGESTION: First do the special case $\left[\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right]^{1 / p}=1$ and $\left[\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right]^{1 / q}=1$. Then reduce the general case to this special case.]
If $p=q=1 / 2$ this is the Schwarz inequality.
c) Similarly, show that for any continuous functions f, g

$$
\int_{a}^{b}|f(x) g(x)| d x \leq\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{1 / p}\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{1 / q}
$$

d) Let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. and let $X:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $f \in C([a, b])$. Use Hölder's inequality (above) to prove the triangle inequality for the norms

$$
\|X\|_{p}:=\left[\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right]^{1 / p} \quad \text { and } \quad\|f\|_{p}:=\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{1 / p} .
$$

B-3 (For those who have studied rings). Let \mathcal{C} be the ring of continuous functions on the interval $0 \leq x \leq 1$.
a) If $0 \leq c \leq 1$, show that the subset $\{f \in \mathcal{C} \mid f(c)=0\}$ is a maximal ideal.
b) Show that every maximal ideal in \mathcal{C} has this form.
[Last revised: November 7, 2014]

